Bogdanov-Takens bifurcation in a predator-prey model

被引:11
|
作者
Liu, Zhihua [1 ]
Magal, Pierre [2 ,3 ]
Xiao, Dongmei [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Bordeaux, IMB, UMR 5251, F-33400 Talence, France
[3] CNRS, IMB, UMR 5251, F-33400 Talence, France
[4] Shanghai Jiao Tong Univ, Dept Math, MOE LSC, Shanghai 200240, Peoples R China
来源
关键词
Predator-prey model; Age structure; Normal forms; Non-densely defined; Bogdanov-Takens bifurcation; NORMAL FORMS; DIFFERENTIAL-EQUATIONS; HOPF-BIFURCATION; SYSTEM; OSCILLATIONS; STABILITY; DELAY;
D O I
10.1007/s00033-016-0724-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of predator-prey model with age structure and discuss whether the model can undergo Bogdanov-Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates that there exist some parameter values such that this predator-prey model has an unique positive equilibrium which is Bogdanov-Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the Bogdanov-Takens bifurcation in a small neighborhood of this positive equilibrium.
引用
下载
收藏
页数:29
相关论文
共 50 条
  • [1] BOGDANOV-TAKENS BIFURCATION IN PREDATOR-PREY SYSTEMS
    Zeng, Bing
    Deng, Shengfu
    Yu, Pei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (11): : 3253 - 3269
  • [2] Bogdanov-Takens bifurcation in a predator-prey model with age structure
    Liu, Zhihua
    Magal, Pierre
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [3] Bogdanov-Takens Bifurcation in a Leslie-Gower Predator-prey Model with Prey Harvesting
    Yi-jun GONG
    Ji-cai HUANG
    Acta Mathematicae Applicatae Sinica, 2014, (01) : 239 - 244
  • [4] Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting
    Yi-jun Gong
    Ji-cai Huang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 239 - 244
  • [5] Bogdanov-Takens Bifurcation in a Leslie-Gower Predator-prey Model with Prey Harvesting
    Gong, Yi-jun
    Huang, Ji-cai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 239 - 244
  • [6] Bogdanov-Takens Bifurcation in a Leslie-Gower Predator-prey Model with Prey Harvesting
    Yi-jun GONG
    Ji-cai HUANG
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (01) : 239 - 244
  • [7] Bogdanov-Takens bifurcation for a diffusive predator-prey system with nonlocal effect and prey refuge
    Lv, Yehu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [8] Bogdanov-Takens Bifurcation for a Predator-Prey System with Holling Type IV Function
    Wang, Jinling
    Liang, Jinling
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 950 - 955
  • [9] BOGDANOV-TAKENS BIFURCATION OF CODIMENSION 3 IN A PREDATOR-PREY MODEL WITH CONSTANT-YIELD PREDATOR HARVESTING
    Huang, Jicai
    Liu, Sanhong
    Ruan, Shigui
    Zhang, Xinan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 1041 - 1055
  • [10] Equilibria and Bogdanov-Takens Bifurcation Analysis in the Bazykin's Predator-Prey System
    Wang, Shuangte
    Yu, Hengguo
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022