BOGDANOV-TAKENS BIFURCATION OF CODIMENSION 3 IN A PREDATOR-PREY MODEL WITH CONSTANT-YIELD PREDATOR HARVESTING

被引:33
|
作者
Huang, Jicai [1 ]
Liu, Sanhong [2 ]
Ruan, Shigui [3 ]
Zhang, Xinan [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hunan, Peoples R China
[2] Hubei Univ Sci & Technol, Sch Math & Stat, Xianning 437100, Hunan, Peoples R China
[3] Univ Miami, Dept Math, Coral Gables, FL 33146 USA
基金
中国国家自然科学基金;
关键词
Predator-prey model; constant-yield harvesting; Bogdanov-Takens bifurcation of codimension 3; Hopf bifurcaton; homoclinic bifurcation; STABILITY REGIONS; SYSTEMS; DYNAMICS;
D O I
10.3934/cpaa.2016.15.1041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, we (J. Huang, Y. Gong and S. Ruan, Discrete Contin. Dynam. Syst. B 18 (2013), 2101-2121) showed that a Leslie-Gower type predator-prey model with constant-yield predator harvesting has a Bogdanov-Takens singularity (cusp) of codimension 3 for some parameter values. In this paper, we prove analytically that the model undergoes Bogdanov-Takens bifurcation (cusp case) of codimension 3. To confirm the theoretical analysis and results, we also perform numerical simulations for various bifurcation scenarios, including the existence of two limit cycles, the coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1.
引用
收藏
页码:1041 / 1055
页数:15
相关论文
共 50 条
  • [1] BOGDANOV-TAKENS BIFURCATION OF CODIMENSION 3 OF A PREDATOR-PREY MODEL WITH CONSTANT-YIELD PREDATOR RELEASING RATE
    Zhou, Hao
    Tang, Sanyi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4671 - 4697
  • [2] Bogdanov-Takens bifurcation in a predator-prey model
    Liu, Zhihua
    Magal, Pierre
    Xiao, Dongmei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [3] BOGDANOV-TAKENS BIFURCATION IN PREDATOR-PREY SYSTEMS
    Zeng, Bing
    Deng, Shengfu
    Yu, Pei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (11): : 3253 - 3269
  • [4] BIFURCATION ANALYSIS IN A PREDATOR-PREY MODEL WITH CONSTANT-YIELD PREDATOR HARVESTING
    Huang, Jicai
    Gong, Yijun
    Ruan, Shigui
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (08): : 2101 - 2121
  • [5] Bogdanov-Takens Bifurcation in a Leslie-Gower Predator-prey Model with Prey Harvesting
    Yi-jun GONG
    Ji-cai HUANG
    [J]. Acta Mathematicae Applicatae Sinica, 2014, (01) : 239 - 244
  • [6] Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting
    Yi-jun Gong
    Ji-cai Huang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 239 - 244
  • [7] Bogdanov-Takens Bifurcation in a Leslie-Gower Predator-prey Model with Prey Harvesting
    Gong, Yi-jun
    Huang, Ji-cai
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 239 - 244
  • [8] Bogdanov-Takens bifurcation in a predator-prey model with age structure
    Liu, Zhihua
    Magal, Pierre
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [9] Bogdanov-Takens bifurcation with codimension three of a predator-prey system suffering the additive Allee effect
    Liu, Yanwei
    Liu, Zengrong
    Wang, Ruiqi
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (03)
  • [10] Bogdanov-Takens bifurcation of a Holling IV prey-predator model with constant-effort harvesting
    Cheng, Lifang
    Zhang, Litao
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)