BOGDANOV-TAKENS BIFURCATION OF CODIMENSION 3 IN A PREDATOR-PREY MODEL WITH CONSTANT-YIELD PREDATOR HARVESTING

被引:33
|
作者
Huang, Jicai [1 ]
Liu, Sanhong [2 ]
Ruan, Shigui [3 ]
Zhang, Xinan [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hunan, Peoples R China
[2] Hubei Univ Sci & Technol, Sch Math & Stat, Xianning 437100, Hunan, Peoples R China
[3] Univ Miami, Dept Math, Coral Gables, FL 33146 USA
基金
中国国家自然科学基金;
关键词
Predator-prey model; constant-yield harvesting; Bogdanov-Takens bifurcation of codimension 3; Hopf bifurcaton; homoclinic bifurcation; STABILITY REGIONS; SYSTEMS; DYNAMICS;
D O I
10.3934/cpaa.2016.15.1041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, we (J. Huang, Y. Gong and S. Ruan, Discrete Contin. Dynam. Syst. B 18 (2013), 2101-2121) showed that a Leslie-Gower type predator-prey model with constant-yield predator harvesting has a Bogdanov-Takens singularity (cusp) of codimension 3 for some parameter values. In this paper, we prove analytically that the model undergoes Bogdanov-Takens bifurcation (cusp case) of codimension 3. To confirm the theoretical analysis and results, we also perform numerical simulations for various bifurcation scenarios, including the existence of two limit cycles, the coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1.
引用
收藏
页码:1041 / 1055
页数:15
相关论文
共 50 条
  • [31] Constant Harvesting in the Predator-Prey Model
    Chrobok, Viktor
    [J]. PROCEEDINGS OF THE 29TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2011, PTS I AND II, 2011, : 296 - 299
  • [32] Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting
    Xiang, Chuang
    Lu, Min
    Huang, Jicai
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 : 370 - 417
  • [33] Bogdanov-Takens bifurcation and multi-peak spatiotemporal staggered periodic patterns in a nonlocal Holling-Tanner predator-prey model
    Cao, Xun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [34] Bogdanov–Takens bifurcation analysis of a delayed predator-prey system with double Allee effect
    Jianfeng Jiao
    Can Chen
    [J]. Nonlinear Dynamics, 2021, 104 : 1697 - 1707
  • [35] Bogdanov-Takens Bifurcation of a Delayed Ratio-Dependent Holling-Tanner Predator Prey System
    Liu, Xia
    Liu, Yanwei
    Wang, Jinling
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [36] Bifurcation Analysis of a Holling-Tanner Model with Generalist Predator and Constant-Yield Harvesting
    Wu, Hongqiuxue
    Li, Zhong
    He, Mengxin
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (06):
  • [37] Bifurcation analysis of a diffusive predator-prey model with prey social behavior and predator harvesting
    Mezouaghi, Abdelheq
    Djilali, Salih
    Bentout, Soufiane
    Biroud, Kheireddine
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (02) : 718 - 731
  • [38] ANALYSIS OF BOGDANOV-TAKENS BIFURCATION OF CODIMENSION 2 IN A GAUSE-TYPE MODEL WITH CONSTANT HARVESTING OF BOTH SPECIES AND DELAY EFFECT
    Sarif, Nawaj
    Sarwardi, Sahabuddin
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2021, 29 (03) : 741 - 771
  • [39] Turing instability and Hopf bifurcation in a predator-prey model with delay and predator harvesting
    Gao, Wenjing
    Tong, Yihui
    Zhai, Lihua
    Yang, Ruizhi
    Tang, Leiyu
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [40] Bogdanov–Takens bifurcation for a diffusive predator–prey system with nonlocal effect and prey refuge
    Yehu Lv
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74