Bogdanov-Takens Bifurcation of a Delayed Ratio-Dependent Holling-Tanner Predator Prey System

被引:1
|
作者
Liu, Xia [1 ]
Liu, Yanwei [2 ]
Wang, Jinling [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Shanghai Univ, Inst Syst Biol, Shanghai 200444, Peoples R China
关键词
FUNCTIONAL-RESPONSE; MULTIPLE BIFURCATIONS; MODEL; SINGULARITY;
D O I
10.1155/2013/898015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A delayed predator prey system with refuge and constant rate harvesting is discussed by applying the normal form theory of retarded functional differential equations introduced by Faria and Magalhaes. The analysis results show that under some conditions the system has a Bogdanov-Takens singularity. A versal unfolding of the system at this singularity is obtained. Our main results illustrate that the delay has an important effect on the dynamical behaviors of the system.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Stability and Bifurcation in a Delayed Holling-Tanner Predator-Prey System with Ratio-Dependent Functional Response
    Liu, Juan
    Zhang, Zizhen
    Fu, Ming
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [2] BOGDANOV-TAKENS BIFURCATION IN A DELAYED MICHAELIS-MENTEN TYPE RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH PREY HARVESTING
    Dai, Yunxian
    Yang, Ping
    Luo, Zhiliang
    Lin, Yiping
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (04): : 1333 - 1346
  • [3] Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting
    Xiang, Chuang
    Lu, Min
    Huang, Jicai
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 : 370 - 417
  • [4] Dynamical analysis of a delayed ratio-dependent Holling-Tanner predator-prey model
    Saha, Tapan
    Chakrabarti, Charugopal
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 358 (02) : 389 - 402
  • [5] Global dynamics of a ratio-dependent Holling-Tanner predator-prey system
    Ding, Wei
    Huang, Wenzhang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 458 - 475
  • [6] Bogdanov-Takens Bifurcation for a Predator-Prey System with Holling Type IV Function
    Wang, Jinling
    Liang, Jinling
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 950 - 955
  • [7] Bogdanov-Takens bifurcation and multi-peak spatiotemporal staggered periodic patterns in a nonlocal Holling-Tanner predator-prey model
    Cao, Xun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [8] BOGDANOV-TAKENS BIFURCATION IN PREDATOR-PREY SYSTEMS
    Zeng, Bing
    Deng, Shengfu
    Yu, Pei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (11): : 3253 - 3269
  • [9] Bogdanov-Takens bifurcation in a predator-prey model
    Liu, Zhihua
    Magal, Pierre
    Xiao, Dongmei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [10] The Impact of Nonlinear Harvesting on a Ratio-dependent Holling-Tanner Predator-prey System and Optimum Harvesting
    Singh, Manoj Kumar
    Bhadauria, B. S.
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2020, 15 (01): : 117 - 148