Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting

被引:15
|
作者
Xiang, Chuang [1 ]
Lu, Min [1 ]
Huang, Jicai [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Holling-Tanner model; Constant-yield prey harvesting; Degenerate Bogdanov-Takens bifurcation of codimension 4; Hopf bifurcation; Coextinction; PREDATOR-PREY SYSTEMS; STABILITY REGIONS;
D O I
10.1016/j.jde.2022.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we revisit the Holling-Tanner model with constant-yield prey harvesting. It is shown that the highest codimension of a nilpotent cusp is 4, and the model can undergo degenerate Bogdanov-Takens bifurcation of codimension 4. Moreover, when the model has a center-type equilibrium, we show that it is a weak focus with order at least 3 and at most 4, and the model can exhibit Hopf bifurcation of codimension 3. Some algebraic methods including resultant elimination and pseudo-division are used to solve the semialgebraic varieties of normal form coefficients or focal values. Our results indicate that constant-yield prey harvesting can cause not only richer dynamics and bifurcations, but also the coextinction of both populations with some positive initial densities. Finally, numerical simulations, including the coexistence of limit cycle and homoclinic cycle, and three limit cycles, are presented to illustrate the theoretical results. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:370 / 417
页数:48
相关论文
共 50 条
  • [1] Bogdanov-Takens Bifurcation of a Delayed Ratio-Dependent Holling-Tanner Predator Prey System
    Liu, Xia
    Liu, Yanwei
    Wang, Jinling
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [2] Bogdanov-Takens bifurcation and multi-peak spatiotemporal staggered periodic patterns in a nonlocal Holling-Tanner predator-prey model
    Cao, Xun
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [3] Bogdanov-Takens Bifurcation of Codimension 3 in the Gierer-Meinhardt Model
    Wu, Ranchao
    Yang, Lingling
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (14):
  • [4] Bogdanov-Takens Bifurcation
    Liebscher, Stefan
    [J]. BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 81 - 102
  • [5] Bogdanov-Takens bifurcation of a Holling IV prey-predator model with constant-effort harvesting
    Cheng, Lifang
    Zhang, Litao
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [6] BOGDANOV-TAKENS BIFURCATION OF CODIMENSION 3 IN A PREDATOR-PREY MODEL WITH CONSTANT-YIELD PREDATOR HARVESTING
    Huang, Jicai
    Liu, Sanhong
    Ruan, Shigui
    Zhang, Xinan
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 1041 - 1055
  • [7] Study of a degenerate Bogdanov-Takens bifurcation in a family of mechanical oscillators
    Freire, E
    Gamero, E
    Rodriguez-Luis, AJ
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1998, 25 (03) : 287 - 297
  • [8] Bogdanov-Takens bifurcation in a predator-prey model
    Liu, Zhihua
    Magal, Pierre
    Xiao, Dongmei
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06):
  • [9] ANALYSIS OF BOGDANOV-TAKENS BIFURCATION OF CODIMENSION 2 IN A GAUSE-TYPE MODEL WITH CONSTANT HARVESTING OF BOTH SPECIES AND DELAY EFFECT
    Sarif, Nawaj
    Sarwardi, Sahabuddin
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2021, 29 (03) : 741 - 771
  • [10] Bogdanov-Takens Bifurcation for a Predator-Prey System with Holling Type IV Function
    Wang, Jinling
    Liang, Jinling
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 950 - 955