Strongly correlated zero-bias anomaly in double quantum dot measurements

被引:0
|
作者
Wortis, Rachel [1 ]
Folk, Joshua [2 ,3 ]
Luscher, Silvia [2 ,3 ]
Luyben, Sylvia [1 ]
机构
[1] Trent Univ, Dept Phys & Astron, Peterborough, ON K9L 0G2, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
HUBBARD MODEL; DISORDER;
D O I
10.1103/PhysRevB.105.245116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experiments in doped transition metal oxides often show suppression in the single-particle density of states at the Fermi level, but disorder-induced zero-bias anomalies in strongly correlated systems remain poorly understood. Numerical studies of the Anderson-Hubbard model have identified a zero-bias anomaly that is unique to strongly correlated materials, with a width proportional to the intersite hopping amplitude t [S. Chiesa, P. B. Chakraborty, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 101, 086401 (2008)]. In ensembles of two-site systems, a zero-bias anomaly with the same parameter dependence also occurs, suggesting a similar physical origin R. Wortis and W. A. Atkinson, Phys. Rev. B 82, 073107 (2010)]. We describe how this kineticenergy-driven zero-bias anomaly in ensembles of two-site systems may be seen in a mesoscopic realization based on double quantum dots. Moreover, the double-quantum-dot measurements provide access not only to the ensemble-average density of states but also to the details of the transitions which give rise to the zero-bias anomaly.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot
    Seridonio, A. C.
    Yoshida, M.
    Oliveira, L. N.
    PHYSICAL REVIEW B, 2009, 80 (23):
  • [32] ZERO-BIAS ANOMALY IN GAAS/MO TUNNEL JUNCTIONS
    SOOD, BR
    PAK, YL
    CHANDRAS.BS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (04): : 555 - 555
  • [33] Nonequilibrium Luttinger liquid: Zero-bias anomaly and dephasing
    Gutman, D. B.
    Gefen, Yuval
    Mirlin, A. D.
    PHYSICAL REVIEW LETTERS, 2008, 101 (12)
  • [34] Zero-bias anomaly in finite-size systems
    Kamenev, A
    Gefen, Y
    PHYSICAL REVIEW B, 1996, 54 (08): : 5428 - 5437
  • [35] Zero-bias anomaly in the tunneling density of states of graphene
    Mariani, Eros
    Glazman, Leonid I.
    Kamenev, Alex
    von Oppen, Felix
    PHYSICAL REVIEW B, 2007, 76 (16):
  • [36] Zero-bias anomaly in CrO2 junctions
    Sokolov, A
    Yang, CS
    Yuan, L
    Liou, SH
    Cheng, RH
    Jeong, HK
    Komesu, T
    Xu, B
    Borca, CN
    Dowben, PA
    Doudin, B
    EUROPHYSICS LETTERS, 2002, 58 (03): : 448 - 454
  • [37] Zero-bias anomaly in p-wave superconductor
    Rosenstein, Baruch
    Shapiro, B. Ya.
    Shapiro, I.
    Li, Dingping
    EPL, 2015, 112 (03)
  • [38] Zeeman splitting of zero-bias anomaly in Luttinger liquids
    Shytov, AV
    Glazman, LI
    Starykh, OA
    PHYSICAL REVIEW LETTERS, 2003, 91 (04)
  • [39] Zero-bias photocurrent and valley current in a circular graphene quantum dot with noncollinear leads
    Dai, Min
    Zhai, Feng
    PHYSICAL REVIEW B, 2025, 111 (11)
  • [40] Zero-Bias Spin Separation in Quantum Wells
    Ganichev, S. D.
    Bel'kov, V. V.
    Tarasenko, S. A.
    Danilov, S. N.
    Giglberger, S.
    Hoffmann, Ch.
    Ivchenko, E. L.
    Weiss, D.
    Gerl, C.
    Schuh, D.
    Wegscheider, W.
    Prettl, W.
    CONFERENCE DIGEST OF THE 2006 JOINT 31ST INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 14TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, 2006, : 34 - 34