Strongly correlated zero-bias anomaly in double quantum dot measurements

被引:0
|
作者
Wortis, Rachel [1 ]
Folk, Joshua [2 ,3 ]
Luscher, Silvia [2 ,3 ]
Luyben, Sylvia [1 ]
机构
[1] Trent Univ, Dept Phys & Astron, Peterborough, ON K9L 0G2, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
HUBBARD MODEL; DISORDER;
D O I
10.1103/PhysRevB.105.245116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experiments in doped transition metal oxides often show suppression in the single-particle density of states at the Fermi level, but disorder-induced zero-bias anomalies in strongly correlated systems remain poorly understood. Numerical studies of the Anderson-Hubbard model have identified a zero-bias anomaly that is unique to strongly correlated materials, with a width proportional to the intersite hopping amplitude t [S. Chiesa, P. B. Chakraborty, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 101, 086401 (2008)]. In ensembles of two-site systems, a zero-bias anomaly with the same parameter dependence also occurs, suggesting a similar physical origin R. Wortis and W. A. Atkinson, Phys. Rev. B 82, 073107 (2010)]. We describe how this kineticenergy-driven zero-bias anomaly in ensembles of two-site systems may be seen in a mesoscopic realization based on double quantum dots. Moreover, the double-quantum-dot measurements provide access not only to the ensemble-average density of states but also to the details of the transitions which give rise to the zero-bias anomaly.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Zero-bias conductance through side-coupled double quantum dots
    Bonca, J.
    Zitko, R.
    ELECTRON CORRELATION IN NEW MATERIALS AND NANOSYSTEMS, 2007, 241 : 371 - +
  • [42] Spin Thermoelectric Effects in a Strongly Correlated Double Quantum Dot System
    Karwacki, L.
    ACTA PHYSICA POLONICA A, 2015, 127 (02) : 478 - 480
  • [43] Benefits of using undoped GaAs/AlGaAs heterostructures: A case study of the zero-bias bias anomaly in quantum wires
    Sfigakis, F.
    Das Gupta, K.
    Sarkozy, S.
    Farrer, I.
    Ritchie, D. A.
    Pepper, M.
    Jones, G. A. C.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (04): : 1200 - 1204
  • [44] ZERO-BIAS ANOMALY IN GAAS - MO TUNNEL-JUNCTIONS
    SOOD, BR
    PAK, YL
    JOURNAL OF APPLIED PHYSICS, 1974, 45 (06) : 2579 - 2581
  • [45] Bulk and boundary zero-bias anomaly in multiwall carbon nanotubes
    Egger, R
    Gogolin, AO
    PHYSICAL REVIEW LETTERS, 2001, 87 (06) : 664011 - 664014
  • [46] Zero-bias anomaly in a two-dimensional granular insulator
    Ossi, N.
    Bitton, L.
    Gutman, D. B.
    Frydman, A.
    PHYSICAL REVIEW B, 2013, 87 (11):
  • [47] On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off
    Xiang, S.
    Xiao, S.
    Fuji, K.
    Shibuya, K.
    Endo, T.
    Yumoto, N.
    Morimoto, T.
    Aoki, N.
    Bird, J. P.
    Ochiai, Y.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (12)
  • [48] An alternative view at the zero-bias anomaly of metallic point contacts
    Gloos, Kurt
    LOW TEMPERATURE PHYSICS, 2009, 35 (12) : 935 - 938
  • [49] EXPERIMENTAL OBSERVATION OF CRITICAL TEMPERATURE FOR ZERO-BIAS TUNNELING ANOMALY
    IGNATEV, OM
    TARENKOV, VY
    STRELTSO.VA
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1970, (10): : 901 - &
  • [50] Zero-bias conductance in carbon nanotube quantum dots
    Anders, Frithjof B.
    Logan, David E.
    Galpin, Martin R.
    Finkelstein, Gleb
    PHYSICAL REVIEW LETTERS, 2008, 100 (08)