Strongly correlated zero-bias anomaly in double quantum dot measurements

被引:0
|
作者
Wortis, Rachel [1 ]
Folk, Joshua [2 ,3 ]
Luscher, Silvia [2 ,3 ]
Luyben, Sylvia [1 ]
机构
[1] Trent Univ, Dept Phys & Astron, Peterborough, ON K9L 0G2, Canada
[2] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
HUBBARD MODEL; DISORDER;
D O I
10.1103/PhysRevB.105.245116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Experiments in doped transition metal oxides often show suppression in the single-particle density of states at the Fermi level, but disorder-induced zero-bias anomalies in strongly correlated systems remain poorly understood. Numerical studies of the Anderson-Hubbard model have identified a zero-bias anomaly that is unique to strongly correlated materials, with a width proportional to the intersite hopping amplitude t [S. Chiesa, P. B. Chakraborty, W. E. Pickett, and R. T. Scalettar, Phys. Rev. Lett. 101, 086401 (2008)]. In ensembles of two-site systems, a zero-bias anomaly with the same parameter dependence also occurs, suggesting a similar physical origin R. Wortis and W. A. Atkinson, Phys. Rev. B 82, 073107 (2010)]. We describe how this kineticenergy-driven zero-bias anomaly in ensembles of two-site systems may be seen in a mesoscopic realization based on double quantum dots. Moreover, the double-quantum-dot measurements provide access not only to the ensemble-average density of states but also to the details of the transitions which give rise to the zero-bias anomaly.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] ZERO-BIAS TUNNELING ANOMALY AT A VORTEX CORE
    OVERHAUSER, AW
    DAEMEN, LL
    PHYSICAL REVIEW LETTERS, 1989, 62 (14) : 1691 - 1693
  • [22] Tunneling zero-bias anomaly in the quasiballistic regime
    Rudin, A. M.
    Aleiner, I. L.
    Glazman, L. I.
    Physical Review B: Condensed Matter, 55 (15):
  • [23] Zero-bias anomaly in cotunneling transport through quantum-dot spin valves -: art. no. 113301
    Weymann, I
    Barnas, J
    König, J
    Martinek, J
    Schön, G
    PHYSICAL REVIEW B, 2005, 72 (11):
  • [24] Nonequilibrium zero-bias anomaly in disordered metals
    Gutman, D. B.
    Gefen, Yuval
    Mirlin, A. D.
    PHYSICAL REVIEW LETTERS, 2008, 100 (08)
  • [25] Tunneling zero-bias anomaly in the quasiballistic regime
    Rudin, AM
    Aleiner, IL
    Glazman, LI
    PHYSICAL REVIEW B, 1997, 55 (15): : 9322 - 9325
  • [26] Zero-bias anomaly in ferromagnetic Ni nanoconstrictions
    Ienaga, K.
    Nakashima, N.
    Inagaki, Y.
    Tsujii, H.
    Honda, S.
    Kimura, T.
    Kawae, T.
    PHYSICAL REVIEW B, 2012, 86 (06):
  • [27] Zero-bias conductance anomaly in graphene dots
    Kanai, Yasushi
    Almokhtar, Mohamed
    Ono, Takao
    Ohno, Yasuhide
    Maehashi, Kenzo
    Inoue, Kouichi
    Matsumoto, Kazuhiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (06)
  • [28] Zero-Bias Anomaly in Magnetic Tunnel Junctions
    Yang, H.
    Yang, S-H
    Ilnicki, G.
    Martinek, J.
    Parkin, S. S. P.
    ACTA PHYSICA POLONICA A, 2010, 118 (02) : 316 - 318
  • [29] Scaling of the Kondo zero-bias peak in a hole quantum dot at finite temperatures
    Klochan, O.
    Micolich, A. P.
    Hamilton, A. R.
    Reuter, D.
    Wieck, A. D.
    Reininghaus, F.
    Pletyukhov, M.
    Schoeller, H.
    PHYSICAL REVIEW B, 2013, 87 (20):
  • [30] Zero-bias anomaly of quantum point contacts in the low-conductance limit
    Ren, Y.
    Yu, W. W.
    Frolov, S. M.
    Folk, J. A.
    Wegscheider, W.
    PHYSICAL REVIEW B, 2010, 82 (04)