General Linear Recurrence Sequences and Their Convolution Formulas

被引:2
|
作者
Ricci, Paolo Emilio [1 ]
Natalini, Pierpaolo [2 ]
机构
[1] Int Telemat Univ UniNettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
关键词
liner recursions; convolution formulas; Gegenbauer polynomials; Humbert polynomials; classical polynomials in several variables; classical number sequences; FIBONACCI NUMBERS;
D O I
10.3390/axioms8040132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend a technique recently introduced by Chen Zhuoyu and Qi Lan in order to find convolution formulas for second order linear recurrence polynomials generated by 11+at+bt2x. The case of generating functions containing parameters, even in the numerator is considered. Convolution formulas and general recurrence relations are derived. Many illustrative examples and a straightforward extension to the case of matrix polynomials are shown.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] On sequences defined by linear recurrence relations
    Engstrom, H. T.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1931, 33 (1-4) : 210 - 218
  • [22] The zero multiplicity of linear recurrence sequences
    Schmidt, WM
    ACTA MATHEMATICA, 1999, 182 (02) : 243 - 282
  • [23] Encoding Trees by Linear Recurrence Sequences
    Anisimov A.V.
    Cybernetics and Systems Analysis, 2017, 53 (6) : 835 - 846
  • [24] ASYMPTOTIC POSITIVENESS OF LINEAR RECURRENCE SEQUENCES
    NAGASAKA, K
    SHIUE, JS
    FIBONACCI QUARTERLY, 1990, 28 (04): : 340 - 346
  • [25] On Homogeneous Combinations of Linear Recurrence Sequences
    Hubalovska, Marie
    Hubalovsky, Stepan
    Trojovska, Eva
    MATHEMATICS, 2020, 8 (12) : 1 - 7
  • [26] On prime powers in linear recurrence sequences
    Odjoumani, Japhet
    Ziegler, Volker
    ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (02): : 349 - 366
  • [27] Arithmetic functions with linear recurrence sequences
    Luca, Florian
    Shparlinski, Igor E.
    JOURNAL OF NUMBER THEORY, 2007, 125 (02) : 459 - 472
  • [28] On linear recurrence sequences with polynomial coefficients
    VanderPoorten, AJ
    Shparlinski, IE
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 147 - 155
  • [29] A robust class of linear recurrence sequences
    Barloy, Corentin
    Fijalkow, Nathanael
    Lhote, Nathan
    Mazowiecki, Filip
    INFORMATION AND COMPUTATION, 2022, 289
  • [30] Linear recurrence sequences without zeros
    Artūras Dubickas
    Aivaras Novikas
    Czechoslovak Mathematical Journal, 2014, 64 : 857 - 865