Linear recurrence sequences without zeros

被引:0
|
作者
Artūras Dubickas
Aivaras Novikas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
关键词
linear recurrence sequence; period modulo ; polynomial splitting in ; 11B37; 11B50; 11T06;
D O I
暂无
中图分类号
学科分类号
摘要
Let ad−1,⋯, a0 ∈ ℤ, where d ∈ ℕ and a0 ≠ 0, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = ({x_n})_{n = 1}^\infty $$\end{document} be a sequence of integers given by the linear recurrence xn+d = ad−1xn+d−1 + ⋯ + a0xn for n = 1, 2, 3, ⋯. We show that there are a prime number p and d integers x1, ⋯, xd such that no element of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = ({x_n})_{n = 1}^\infty $$\end{document} defined by the above linear recurrence is divisible by p. Furthermore, for any nonnegative integer s there is a prime number p ⩾ 3 and d integers x1, ⋯, xd such that every element of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X = ({x_n})_{n = 1}^\infty $$\end{document} defined as above modulo p belongs to the set {s + 1, s + 2, ⋯, p − s − 1}.
引用
收藏
页码:857 / 865
页数:8
相关论文
共 50 条
  • [1] LINEAR RECURRENCE SEQUENCES WITHOUT ZEROS
    Dubickas, Arturas
    Novikas, Aivaras
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) : 857 - 865
  • [2] On the zeros of linear recurrence sequences
    Amoroso, Francesco
    Viada, Evelina
    ACTA ARITHMETICA, 2011, 147 (04) : 387 - 396
  • [3] Zeros of linear recurrence sequences
    Schlickewei, HP
    Schmidt, WM
    Waldschmidt, M
    MANUSCRIPTA MATHEMATICA, 1999, 98 (02) : 225 - 241
  • [4] Zeros of linear recurrence sequences
    Hans Peter Schlickewei
    Wolfgang M. Schmidt
    Michel Waldschmidt
    manuscripta mathematica, 1999, 98 : 225 - 241
  • [5] Zeros of linear recurrence sequences
    Schmidt, WM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 609 - 630
  • [6] Twisted rational zeros of linear recurrence sequences
    Bilu, Yuri
    Luca, Florian
    Nieuwveld, Joris
    Ouaknine, Joel
    Worrell, James
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [7] ZEROS OF RECURRENCE SEQUENCES
    VANDERPOORTEN, AJ
    SCHLICKEWEI, HP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1991, 44 (02) : 215 - 223
  • [8] ZEROS OF LINEAR RECURSIVE SEQUENCES
    VERESHCHAGIN, NK
    DOKLADY AKADEMII NAUK SSSR, 1984, 278 (05): : 1036 - 1039
  • [10] Linear recurrence sequences
    Schmidt, WM
    DIOPHANTINE APPROXIMATION, 2003, 1819 : 171 - 247