Let ad−1,⋯, a0 ∈ ℤ, where d ∈ ℕ and a0 ≠ 0, and let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X = ({x_n})_{n = 1}^\infty $$\end{document} be a sequence of integers given by the linear recurrence xn+d = ad−1xn+d−1 + ⋯ + a0xn for n = 1, 2, 3, ⋯. We show that there are a prime number p and d integers x1, ⋯, xd such that no element of the sequence \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X = ({x_n})_{n = 1}^\infty $$\end{document} defined by the above linear recurrence is divisible by p. Furthermore, for any nonnegative integer s there is a prime number p ⩾ 3 and d integers x1, ⋯, xd such that every element of the sequence \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X = ({x_n})_{n = 1}^\infty $$\end{document} defined as above modulo p belongs to the set {s + 1, s + 2, ⋯, p − s − 1}.