Encoding Trees by Linear Recurrence Sequences

被引:1
|
作者
Anisimov A.V. [1 ]
机构
[1] Taras Shevchenko National University of Kyiv, Kyiv
关键词
binary tree; encoding tree; Fibonacci number; linear recurrent sequence;
D O I
10.1007/s10559-017-9985-8
中图分类号
学科分类号
摘要
A unified encoding of ordered binary trees with integer-valued labels at their vertices is proposed using linear forms of neighboring members of linear recursive sequences of the form Pn + 2 = an + 2 Pn + 1 + P, where P1 = P2 = 1; a3 and a4 … are natural numbers. Encoding and decoding procedures are simply implemented and use the recursive technique of direct pre-order depth-first tree traversal. A brief review of possible applications of the proposed encoding in problems of tree processing and cryptographic symmetric encryption is presented. © 2017, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:835 / 846
页数:11
相关论文
共 50 条
  • [1] Linear recurrence sequences
    Schmidt, WM
    DIOPHANTINE APPROXIMATION, 2003, 1819 : 171 - 247
  • [2] Zeros of linear recurrence sequences
    Schlickewei, HP
    Schmidt, WM
    Waldschmidt, M
    MANUSCRIPTA MATHEMATICA, 1999, 98 (02) : 225 - 241
  • [3] On the zeros of linear recurrence sequences
    Amoroso, Francesco
    Viada, Evelina
    ACTA ARITHMETICA, 2011, 147 (04) : 387 - 396
  • [4] On the multiplicity of linear recurrence sequences
    Allen, Patrick B.
    JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 212 - 216
  • [5] Zeros of linear recurrence sequences
    Schmidt, WM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 609 - 630
  • [6] Palindromes in linear recurrence sequences
    Cilleruelo, Javier
    Tesoro, Rafael
    Luca, Florian
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 433 - 442
  • [7] Zeros of linear recurrence sequences
    Hans Peter Schlickewei
    Wolfgang M. Schmidt
    Michel Waldschmidt
    manuscripta mathematica, 1999, 98 : 225 - 241
  • [8] On the nonlinearity of linear recurrence sequences
    Shparlinski, IE
    Winterhof, A
    APPLIED MATHEMATICS LETTERS, 2006, 19 (04) : 340 - 344
  • [9] Palindromes in linear recurrence sequences
    Javier Cilleruelo
    Rafael Tesoro
    Florian Luca
    Monatshefte für Mathematik, 2013, 171 : 433 - 442
  • [10] ON MONOCHROMATIC LINEAR RECURRENCE SEQUENCES
    Bertok, Csanad
    Nyul, Gabor
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 11 (02) : 58 - 62