ON MONOCHROMATIC LINEAR RECURRENCE SEQUENCES

被引:0
|
作者
Bertok, Csanad [1 ]
Nyul, Gabor [1 ]
机构
[1] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
基金
匈牙利科学研究基金会;
关键词
linear recurrence sequences; van der Waerden type theorems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some van der Waerden type theorems for linear recurrence sequences. Under the assumption a(i-1) <= a(i)a(s-1) (i = 2, . . . , s), we extend results of G. Nyul and B. Rauf for sequences satisfying x(i) = a(1)x(i-s) + . . . + a(s)x(i-1) (i >= s + 1), where a(1), . . . , a(s) are positive integers. Moreover, we solve completely the same problem for sequences satisfying the binary recurrence relation x(i) = ax(i-1) - bx(i-2) (i >= 3) and x(1) < x(2), where a, b are positive integers with a >= b vertical bar 1.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 50 条
  • [1] Linear recurrence sequences
    Schmidt, WM
    DIOPHANTINE APPROXIMATION, 2003, 1819 : 171 - 247
  • [2] Zeros of linear recurrence sequences
    Schlickewei, HP
    Schmidt, WM
    Waldschmidt, M
    MANUSCRIPTA MATHEMATICA, 1999, 98 (02) : 225 - 241
  • [3] On the zeros of linear recurrence sequences
    Amoroso, Francesco
    Viada, Evelina
    ACTA ARITHMETICA, 2011, 147 (04) : 387 - 396
  • [4] On the multiplicity of linear recurrence sequences
    Allen, Patrick B.
    JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 212 - 216
  • [5] Zeros of linear recurrence sequences
    Schmidt, WM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 609 - 630
  • [6] Palindromes in linear recurrence sequences
    Cilleruelo, Javier
    Tesoro, Rafael
    Luca, Florian
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 433 - 442
  • [7] Zeros of linear recurrence sequences
    Hans Peter Schlickewei
    Wolfgang M. Schmidt
    Michel Waldschmidt
    manuscripta mathematica, 1999, 98 : 225 - 241
  • [8] On the nonlinearity of linear recurrence sequences
    Shparlinski, IE
    Winterhof, A
    APPLIED MATHEMATICS LETTERS, 2006, 19 (04) : 340 - 344
  • [9] Palindromes in linear recurrence sequences
    Javier Cilleruelo
    Rafael Tesoro
    Florian Luca
    Monatshefte für Mathematik, 2013, 171 : 433 - 442
  • [10] On prime powers in linear recurrence sequences
    Japhet Odjoumani
    Volker Ziegler
    Annales mathématiques du Québec, 2023, 47 : 349 - 366