ON MONOCHROMATIC LINEAR RECURRENCE SEQUENCES

被引:0
|
作者
Bertok, Csanad [1 ]
Nyul, Gabor [1 ]
机构
[1] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
基金
匈牙利科学研究基金会;
关键词
linear recurrence sequences; van der Waerden type theorems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some van der Waerden type theorems for linear recurrence sequences. Under the assumption a(i-1) <= a(i)a(s-1) (i = 2, . . . , s), we extend results of G. Nyul and B. Rauf for sequences satisfying x(i) = a(1)x(i-s) + . . . + a(s)x(i-1) (i >= s + 1), where a(1), . . . , a(s) are positive integers. Moreover, we solve completely the same problem for sequences satisfying the binary recurrence relation x(i) = ax(i-1) - bx(i-2) (i >= 3) and x(1) < x(2), where a, b are positive integers with a >= b vertical bar 1.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 50 条
  • [31] Integers representable as differences of linear recurrence sequences
    Tichy, Robert
    Vukusic, Ingrid
    Yang, Daodao
    Ziegler, Volker
    RESEARCH IN NUMBER THEORY, 2021, 7 (02)
  • [32] Integers representable as differences of linear recurrence sequences
    Robert Tichy
    Ingrid Vukusic
    Daodao Yang
    Volker Ziegler
    Research in Number Theory, 2021, 7
  • [33] Twisted rational zeros of linear recurrence sequences
    Bilu, Yuri
    Luca, Florian
    Nieuwveld, Joris
    Ouaknine, Joel
    Worrell, James
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [34] PRIMEFREE SHIFTED BINARY LINEAR RECURRENCE SEQUENCES
    Jones, Lenny
    Somer, Lawrence
    FIBONACCI QUARTERLY, 2019, 57 (01): : 51 - 67
  • [35] Sums of Primes and Quadratic Linear Recurrence Sequences
    Dubickas, Arturas
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (12) : 2251 - 2260
  • [36] CONVERGENCE OF SEQUENCES WITH LINEAR FRACTIONAL RECURRENCE RELATION
    LIEBECK, H
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (04): : 353 - &
  • [37] On the Positivity Problem for Simple Linear Recurrence Sequences
    Ouaknine, Joel
    Worrell, James
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT II, 2014, 8573 : 318 - 329
  • [38] Deciding ω-Regular Properties on Linear Recurrence Sequences
    Almagor, Shaull
    Karimov, Toghrul
    Kelmendi, Edon
    Ouaknine, Joel
    Worrell, James
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5 (POPL):
  • [39] Positivity of third order linear recurrence sequences
    Laohakosol, Vichian
    Tangsupphathawat, Pinthira
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3239 - 3248
  • [40] The Shape of the Value Sets of Linear Recurrence Sequences
    Gerhold, Stefan
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (03)