The Shape of the Value Sets of Linear Recurrence Sequences

被引:0
|
作者
Gerhold, Stefan [1 ,2 ]
机构
[1] Vienna Univ Technol, A-1040 Vienna, Austria
[2] Microsoft Res INRIA, 1-91893 Orsay, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the closure of the value set of a real linear recurrence sequence is the union of a countable set and a finite collection of intervals. Conversely, any finite collection of closed intervals is the closure of the value set of some recurrence sequence
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Kepler sets of linear recurrence sequences
    Berend, D.
    Kumar, R.
    ACTA MATHEMATICA HUNGARICA, 2025, : 54 - 95
  • [2] $\boldsymbol {p}$ -ADIC QUOTIENT SETS: LINEAR RECURRENCE SEQUENCES
    Antony, Deepa
    Barman, Rupam
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (01) : 19 - 28
  • [3] Linear recurrence sequences
    Schmidt, WM
    DIOPHANTINE APPROXIMATION, 2003, 1819 : 171 - 247
  • [4] Kepler sets of second-order linear recurrence sequences over Qp
    Kumar, Rishi
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (01) : 75 - 112
  • [5] p-Adic quotient sets: Linear recurrence sequences with reducible characteristic polynomials
    Antony, Deepa
    Barman, Rupam
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 177 - 186
  • [6] Zeros of linear recurrence sequences
    Schlickewei, HP
    Schmidt, WM
    Waldschmidt, M
    MANUSCRIPTA MATHEMATICA, 1999, 98 (02) : 225 - 241
  • [7] On the zeros of linear recurrence sequences
    Amoroso, Francesco
    Viada, Evelina
    ACTA ARITHMETICA, 2011, 147 (04) : 387 - 396
  • [8] On the multiplicity of linear recurrence sequences
    Allen, Patrick B.
    JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 212 - 216
  • [9] Zeros of linear recurrence sequences
    Schmidt, WM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (3-4): : 609 - 630
  • [10] Palindromes in linear recurrence sequences
    Cilleruelo, Javier
    Tesoro, Rafael
    Luca, Florian
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 433 - 442