The Shape of the Value Sets of Linear Recurrence Sequences

被引:0
|
作者
Gerhold, Stefan [1 ,2 ]
机构
[1] Vienna Univ Technol, A-1040 Vienna, Austria
[2] Microsoft Res INRIA, 1-91893 Orsay, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the closure of the value set of a real linear recurrence sequence is the union of a countable set and a finite collection of intervals. Conversely, any finite collection of closed intervals is the closure of the value set of some recurrence sequence
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Integers representable as differences of linear recurrence sequences
    Tichy, Robert
    Vukusic, Ingrid
    Yang, Daodao
    Ziegler, Volker
    RESEARCH IN NUMBER THEORY, 2021, 7 (02)
  • [42] Integers representable as differences of linear recurrence sequences
    Robert Tichy
    Ingrid Vukusic
    Daodao Yang
    Volker Ziegler
    Research in Number Theory, 2021, 7
  • [43] Twisted rational zeros of linear recurrence sequences
    Bilu, Yuri
    Luca, Florian
    Nieuwveld, Joris
    Ouaknine, Joel
    Worrell, James
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [44] PRIMEFREE SHIFTED BINARY LINEAR RECURRENCE SEQUENCES
    Jones, Lenny
    Somer, Lawrence
    FIBONACCI QUARTERLY, 2019, 57 (01): : 51 - 67
  • [45] Sums of Primes and Quadratic Linear Recurrence Sequences
    Dubickas, Arturas
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (12) : 2251 - 2260
  • [46] CONVERGENCE OF SEQUENCES WITH LINEAR FRACTIONAL RECURRENCE RELATION
    LIEBECK, H
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (04): : 353 - &
  • [47] On the Positivity Problem for Simple Linear Recurrence Sequences
    Ouaknine, Joel
    Worrell, James
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT II, 2014, 8573 : 318 - 329
  • [48] Deciding ω-Regular Properties on Linear Recurrence Sequences
    Almagor, Shaull
    Karimov, Toghrul
    Kelmendi, Edon
    Ouaknine, Joel
    Worrell, James
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5 (POPL):
  • [49] Positivity of third order linear recurrence sequences
    Laohakosol, Vichian
    Tangsupphathawat, Pinthira
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3239 - 3248
  • [50] Convolutions of Sequences with Similar Linear Recurrence Formulas
    Dresden, Greg
    Tulskikh, Michael
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (03)