ON MONOCHROMATIC LINEAR RECURRENCE SEQUENCES

被引:0
|
作者
Bertok, Csanad [1 ]
Nyul, Gabor [1 ]
机构
[1] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
基金
匈牙利科学研究基金会;
关键词
linear recurrence sequences; van der Waerden type theorems;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some van der Waerden type theorems for linear recurrence sequences. Under the assumption a(i-1) <= a(i)a(s-1) (i = 2, . . . , s), we extend results of G. Nyul and B. Rauf for sequences satisfying x(i) = a(1)x(i-s) + . . . + a(s)x(i-1) (i >= s + 1), where a(1), . . . , a(s) are positive integers. Moreover, we solve completely the same problem for sequences satisfying the binary recurrence relation x(i) = ax(i-1) - bx(i-2) (i >= 3) and x(1) < x(2), where a, b are positive integers with a >= b vertical bar 1.
引用
收藏
页码:58 / 62
页数:5
相关论文
共 50 条
  • [21] Arithmetic functions with linear recurrence sequences
    Luca, Florian
    Shparlinski, Igor E.
    JOURNAL OF NUMBER THEORY, 2007, 125 (02) : 459 - 472
  • [22] On linear recurrence sequences with polynomial coefficients
    VanderPoorten, AJ
    Shparlinski, IE
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 147 - 155
  • [23] A robust class of linear recurrence sequences
    Barloy, Corentin
    Fijalkow, Nathanael
    Lhote, Nathan
    Mazowiecki, Filip
    INFORMATION AND COMPUTATION, 2022, 289
  • [24] Linear recurrence sequences without zeros
    Artūras Dubickas
    Aivaras Novikas
    Czechoslovak Mathematical Journal, 2014, 64 : 857 - 865
  • [25] Sums of Primes and Quadratic Linear Recurrence Sequences
    Artūras DUBICKAS
    Acta Mathematica Sinica,English Series, 2013, (12) : 2251 - 2260
  • [26] LINEAR RECURRENCE SEQUENCES SATISFYING CONGRUENCE CONDITIONS
    Minton, Gregory T.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (07) : 2337 - 2352
  • [27] Periodicity in sequences defined by linear recurrence relations
    Engstrom, HT
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1930, 16 : 663 - 665
  • [28] General Linear Recurrence Sequences and Their Convolution Formulas
    Ricci, Paolo Emilio
    Natalini, Pierpaolo
    AXIOMS, 2019, 8 (04)
  • [29] On products of prime powers in linear recurrence sequences
    Odjoumani, Japhet
    Ziegler, Volker
    ACTA ARITHMETICA, 2024, 215 (04) : 355 - 384
  • [30] AN INTRODUCTION TO COMPLETENESS OF POSITIVE LINEAR RECURRENCE SEQUENCES
    Boldyriew, Elzbieta
    Haviland, John
    Lam, Phuc
    Lentfer, John
    Miller, Steven J.
    Suarez, Fernando Trejos
    FIBONACCI QUARTERLY, 2020, 58 (05): : 77 - 90