Encoding Trees by Linear Recurrence Sequences

被引:1
|
作者
Anisimov A.V. [1 ]
机构
[1] Taras Shevchenko National University of Kyiv, Kyiv
关键词
binary tree; encoding tree; Fibonacci number; linear recurrent sequence;
D O I
10.1007/s10559-017-9985-8
中图分类号
学科分类号
摘要
A unified encoding of ordered binary trees with integer-valued labels at their vertices is proposed using linear forms of neighboring members of linear recursive sequences of the form Pn + 2 = an + 2 Pn + 1 + P, where P1 = P2 = 1; a3 and a4 … are natural numbers. Encoding and decoding procedures are simply implemented and use the recursive technique of direct pre-order depth-first tree traversal. A brief review of possible applications of the proposed encoding in problems of tree processing and cryptographic symmetric encryption is presented. © 2017, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:835 / 846
页数:11
相关论文
共 50 条
  • [21] Arithmetic functions with linear recurrence sequences
    Luca, Florian
    Shparlinski, Igor E.
    JOURNAL OF NUMBER THEORY, 2007, 125 (02) : 459 - 472
  • [22] On linear recurrence sequences with polynomial coefficients
    VanderPoorten, AJ
    Shparlinski, IE
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 147 - 155
  • [23] A robust class of linear recurrence sequences
    Barloy, Corentin
    Fijalkow, Nathanael
    Lhote, Nathan
    Mazowiecki, Filip
    INFORMATION AND COMPUTATION, 2022, 289
  • [24] Linear recurrence sequences without zeros
    Artūras Dubickas
    Aivaras Novikas
    Czechoslovak Mathematical Journal, 2014, 64 : 857 - 865
  • [25] Sums of Primes and Quadratic Linear Recurrence Sequences
    Artūras DUBICKAS
    Acta Mathematica Sinica,English Series, 2013, (12) : 2251 - 2260
  • [26] LINEAR RECURRENCE SEQUENCES SATISFYING CONGRUENCE CONDITIONS
    Minton, Gregory T.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (07) : 2337 - 2352
  • [27] Periodicity in sequences defined by linear recurrence relations
    Engstrom, HT
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1930, 16 : 663 - 665
  • [28] General Linear Recurrence Sequences and Their Convolution Formulas
    Ricci, Paolo Emilio
    Natalini, Pierpaolo
    AXIOMS, 2019, 8 (04)
  • [29] On products of prime powers in linear recurrence sequences
    Odjoumani, Japhet
    Ziegler, Volker
    ACTA ARITHMETICA, 2024, 215 (04) : 355 - 384
  • [30] AN INTRODUCTION TO COMPLETENESS OF POSITIVE LINEAR RECURRENCE SEQUENCES
    Boldyriew, Elzbieta
    Haviland, John
    Lam, Phuc
    Lentfer, John
    Miller, Steven J.
    Suarez, Fernando Trejos
    FIBONACCI QUARTERLY, 2020, 58 (05): : 77 - 90