General Linear Recurrence Sequences and Their Convolution Formulas

被引:2
|
作者
Ricci, Paolo Emilio [1 ]
Natalini, Pierpaolo [2 ]
机构
[1] Int Telemat Univ UniNettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[2] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
关键词
liner recursions; convolution formulas; Gegenbauer polynomials; Humbert polynomials; classical polynomials in several variables; classical number sequences; FIBONACCI NUMBERS;
D O I
10.3390/axioms8040132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend a technique recently introduced by Chen Zhuoyu and Qi Lan in order to find convolution formulas for second order linear recurrence polynomials generated by 11+at+bt2x. The case of generating functions containing parameters, even in the numerator is considered. Convolution formulas and general recurrence relations are derived. Many illustrative examples and a straightforward extension to the case of matrix polynomials are shown.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Zeros of linear recurrence sequences
    Hans Peter Schlickewei
    Wolfgang M. Schmidt
    Michel Waldschmidt
    manuscripta mathematica, 1999, 98 : 225 - 241
  • [12] On the nonlinearity of linear recurrence sequences
    Shparlinski, IE
    Winterhof, A
    APPLIED MATHEMATICS LETTERS, 2006, 19 (04) : 340 - 344
  • [13] Palindromes in linear recurrence sequences
    Javier Cilleruelo
    Rafael Tesoro
    Florian Luca
    Monatshefte für Mathematik, 2013, 171 : 433 - 442
  • [14] ON MONOCHROMATIC LINEAR RECURRENCE SEQUENCES
    Bertok, Csanad
    Nyul, Gabor
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 11 (02) : 58 - 62
  • [15] TOPOLOGICAL FORMULAS FOR GENERAL LINEAR NETWORKS
    JONG, MT
    ZOBRIST, GW
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1968, CT15 (03): : 251 - &
  • [16] On prime powers in linear recurrence sequences
    Japhet Odjoumani
    Volker Ziegler
    Annales mathématiques du Québec, 2023, 47 : 349 - 366
  • [17] LINEAR RECURRENCE SEQUENCES WITHOUT ZEROS
    Dubickas, Arturas
    Novikas, Aivaras
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) : 857 - 865
  • [18] ON DIVISORS OF TERMS OF LINEAR RECURRENCE SEQUENCES
    STEWART, CL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1982, 333 : 12 - 31
  • [19] Kepler sets of linear recurrence sequences
    Berend, D.
    Kumar, R.
    ACTA MATHEMATICA HUNGARICA, 2025, : 54 - 95
  • [20] Two equations for linear recurrence sequences
    Losert, V
    ACTA ARITHMETICA, 2005, 119 (02) : 109 - 147