Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks

被引:14
|
作者
Pfister, Martin [1 ,2 ,3 ]
Schuetzenberger, Kornelia [1 ,2 ]
Pfeiffenberger, Ulrike [1 ,2 ]
Messner, Alina [1 ]
Chen, Zhe [1 ]
dos Santos, Valentin Aranha [1 ]
Puchner, Stefan [1 ,2 ,4 ]
Garhoefer, Gerhard [2 ,4 ]
Schmetterer, Leopold [1 ,2 ,4 ,5 ,6 ,7 ]
Groeschl, Martin [3 ]
Werkmeister, Rene M. [1 ,2 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[2] Med Univ Vienna, Christian Doppler Lab Ocular & Dermal Effects Thi, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[3] Vienna Univ Technol, Inst Appl Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[4] Med Univ Vienna, Dept Clin Pharmacol, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[5] The Academia, Singapore Eye Res Inst, 20 Coll Rd,Discovery Tower Level 6, Singapore 169856, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, Novena Campus,11 Mandalay Rd, Singapore 308232, Singapore
[7] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, 8 Coll Rd, Singapore 169857, Singapore
关键词
Compendex;
D O I
10.1364/BOE.10.001315
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at similar to 1310 nm with a bandwidth of 87 nm, providing an axial resolution of similar to 6.5 mu m in tissue. Three-dimensional data sets of a 10 mm x 10 mm skin patch comprising the intradermal filler and the surrounding tissue were acquired. A convolutional neural network using a u-net-like architecture was trained from slices of 100 OCT volume data sets where the dermal filler volume was manually annotated. Using six-fold cross-validation, a mean accuracy of 0.9938 and a Jaccard similarity coefficient of 0.879 were achieved. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1315 / 1328
页数:14
相关论文
共 50 条
  • [41] Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning
    Guo, Xudong
    Zhang, Na
    Guo, Jiefang
    Zhang, Huihe
    Hao, Youguo
    Hang, Jingqing
    MEDICAL PHYSICS, 2019, 46 (12) : 5666 - 5676
  • [42] Wall segmentation in 2D images using convolutional neural networks
    Bjekic, Mihailo
    Lazovic, Ana
    Venkatachalam, K.
    Bacanin, Nebojsa
    Zivkovic, Miodrag
    Kvascev, Goran
    Nikolic, Bosko
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [43] Liver segmentation and metastases detection in MR images using convolutional neural networks
    Jansen, Marielle J. A.
    Kuijf, Hugo J.
    Niekel, Maarten
    Veldhuis, Wouter B.
    Wessels, Frank J.
    Viergever, Max A.
    Pluim, Josien P. W.
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (04)
  • [44] PROSTATE SEGMENTATION IN MR IMAGES USING ENSEMBLE DEEP CONVOLUTIONAL NEURAL NETWORKS
    Jia, Haozhe
    Xia, Yong
    Cai, Weidong
    Fulham, Michael
    Feng, David Dagan
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 762 - 765
  • [45] Automatic segmentation of the left ventricle in echocardiographic images using convolutional neural networks
    Kim, Taeouk
    Hedayat, Mohammadali
    Vaitkus, Veronica V.
    Belohlavek, Marek
    Krishnamurthy, Vinayak
    Borazjani, Iman
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (05) : 1763 - 1781
  • [46] Automatic Segmentation Using Deep Convolutional Neural Networks for Tumor CT Images
    Li, Yunbo
    Li, Xiaofeng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (03)
  • [47] Hepatocellular Carcinoma Segmentation within Ultrasound Images using Convolutional Neural Networks
    Vancea, Flaviu
    Mitrea, Delia
    Nedevschi, Sergiu
    Rotaru, Magda
    Stefanescu, Horia
    Badea, Radu
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 483 - 490
  • [48] Improving the segmentation of scanning probe microscope images using convolutional neural networks
    Farley, Steff
    Hodgkinson, Jo E. A.
    Gordon, Oliver M.
    Turner, Joanna
    Soltoggio, Andrea
    Moriarty, Philip J.
    Hunsicker, Eugenie
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [49] Semantic segmentation on small datasets of satellite images using convolutional neural networks
    Younis, Mohammed Chachan
    Keedwell, Edward
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [50] Breast Lesion Segmentation in Ultrasound Images Using Deep Convolutional Neural Networks
    Ghosh, Dipannita
    Kumar, Amish
    Ghosal, Palash
    Chowdhury, Tamal
    Sadhu, Anup
    Nandi, Debashis
    2020 IEEE CALCUTTA CONFERENCE (CALCON), 2020, : 318 - 322