Liver segmentation and metastases detection in MR images using convolutional neural networks

被引:26
|
作者
Jansen, Marielle J. A. [1 ,2 ]
Kuijf, Hugo J. [1 ,2 ]
Niekel, Maarten [3 ]
Veldhuis, Wouter B. [3 ]
Wessels, Frank J. [3 ]
Viergever, Max A. [1 ,2 ]
Pluim, Josien P. W. [1 ,2 ]
机构
[1] UMC Utrecht, Utrecht, Netherlands
[2] Univ Utrecht, Image Sci Inst Utrecht, Utrecht, Netherlands
[3] UMC Utrecht, Dept Radiol, Utrecht, Netherlands
关键词
dynamic contrast-enhanced MRI; diffusion weighted MRI; liver; segmentation; detection; deep learning; HEPATIC-LESIONS; ENHANCED MRI; CT; CLASSIFICATION; CANCER;
D O I
10.1117/1.JMI.6.4.044003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Primary tumors have a high likelihood of developing metastases in the liver, and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks to detect liver metastases. First, the liver is automatically segmented using the six phases of abdominal dynamic contrast-enhanced (DCE) MR images. Next, DCE-MR and diffusion weighted MR images are used for metastases detection within the liver mask. The liver segmentations have a median Dice similarity coefficient of 0.95 compared with manual annotations. The metastases detection method has a sensitivity of 99.8% with a median of two false positives per image. The combination of the two MR sequences in a dual pathway network is proven valuable for the detection of liver metastases. In conclusion, a high quality liver segmentation can be obtained in which we can successfully detect liver metastases. (c) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PROSTATE SEGMENTATION IN MR IMAGES USING ENSEMBLE DEEP CONVOLUTIONAL NEURAL NETWORKS
    Jia, Haozhe
    Xia, Yong
    Cai, Weidong
    Fulham, Michael
    Feng, David Dagan
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 762 - 765
  • [2] Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network
    Charron, Odelin
    Lallement, Alex
    Jarnet, Delphine
    Noblet, Vincent
    Clavier, Jean-Baptiste
    Meyer, Philippe
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 95 : 43 - 54
  • [3] Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks
    Cem M. Deniz
    Siyuan Xiang
    R. Spencer Hallyburton
    Arakua Welbeck
    James S. Babb
    Stephen Honig
    Kyunghyun Cho
    Gregory Chang
    [J]. Scientific Reports, 8
  • [4] Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks
    Deniz, Cem M.
    Xiang, Siyuan
    Hallyburton, R. Spencer
    Welbeck, Arakua
    Babb, James S.
    Honig, Stephen
    Cho, Kyunghyun
    Chang, Gregory
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [5] Automatic Nasopharyngeal Carcinoma Segmentation in MR Images with Convolutional Neural Networks
    Ma, Zongqing
    Wu, Xi
    Zhou, Jiliu
    [J]. 2017 INTERNATIONAL CONFERENCE ON THE FRONTIERS AND ADVANCES IN DATA SCIENCE (FADS), 2017, : 181 - 184
  • [6] Segmentation of MR Images using DN Convolutional Neural Network
    Bhairnallykar S.T.
    Narawade V.
    [J]. International Journal of Information Technology, 2023, 15 (8) : 4565 - 4576
  • [7] Tumor detection in MR images of regional convolutional neural networks
    Ari, Ali
    Hanbay, Davut
    [J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2019, 34 (03): : 1395 - 1408
  • [8] Tumor detection in MR images of regional convolutional neural networks
    Ari, Ali
    Hanbay, Davut
    [J]. JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2019, 34 (03): : 1396 - +
  • [9] Automatic Glioblastoma Segmentation in Multimodal MR Images Using Improved Fully Convolutional Neural Networks
    Lai, Xiaobo
    Xu, Xiaomei
    Li, Wensheng
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (07) : 1407 - 1414
  • [10] Automated Detection of Liver Steatosis in Ultrasound Images Using Convolutional Neural Networks
    Mohammad, Umar Farooq
    Almekkawy, Mohamed
    [J]. INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,