Liver segmentation and metastases detection in MR images using convolutional neural networks

被引:26
|
作者
Jansen, Marielle J. A. [1 ,2 ]
Kuijf, Hugo J. [1 ,2 ]
Niekel, Maarten [3 ]
Veldhuis, Wouter B. [3 ]
Wessels, Frank J. [3 ]
Viergever, Max A. [1 ,2 ]
Pluim, Josien P. W. [1 ,2 ]
机构
[1] UMC Utrecht, Utrecht, Netherlands
[2] Univ Utrecht, Image Sci Inst Utrecht, Utrecht, Netherlands
[3] UMC Utrecht, Dept Radiol, Utrecht, Netherlands
关键词
dynamic contrast-enhanced MRI; diffusion weighted MRI; liver; segmentation; detection; deep learning; HEPATIC-LESIONS; ENHANCED MRI; CT; CLASSIFICATION; CANCER;
D O I
10.1117/1.JMI.6.4.044003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Primary tumors have a high likelihood of developing metastases in the liver, and early detection of these metastases is crucial for patient outcome. We propose a method based on convolutional neural networks to detect liver metastases. First, the liver is automatically segmented using the six phases of abdominal dynamic contrast-enhanced (DCE) MR images. Next, DCE-MR and diffusion weighted MR images are used for metastases detection within the liver mask. The liver segmentations have a median Dice similarity coefficient of 0.95 compared with manual annotations. The metastases detection method has a sensitivity of 99.8% with a median of two false positives per image. The combination of the two MR sequences in a dual pathway network is proven valuable for the detection of liver metastases. In conclusion, a high quality liver segmentation can be obtained in which we can successfully detect liver metastases. (c) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Power Line Segmentation in Aerial Images Using Convolutional Neural Networks
    Saurav, Sumeet
    Gidde, Prashant
    Singh, Sanjay
    Saini, Ravi
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 11941 LNCS : 623 - 632
  • [22] Semantic segmentation of satellite images of airports using convolutional neural networks
    Gorbachev, V. A.
    Krivorotov, I. A.
    Markelov, A. O.
    Kotlyarova, E., V
    [J]. COMPUTER OPTICS, 2020, 44 (04) : 636 - +
  • [23] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Thaha, M. Mohammed
    Kumar, K. Pradeep Mohan
    Murugan, B. S.
    Dhanasekeran, S.
    Vijayakarthick, P.
    Selvi, A. Senthil
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (09)
  • [24] Segmentation of Histopathological Images with Convolutional Neural Networks using Fourier Features
    Hatipolu, Nuh
    Bilgin, Gokhan
    [J]. 2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 455 - 458
  • [25] Semantic Segmentation of Marine Radar Images using Convolutional Neural Networks
    Kim, Keunhwan
    Kim, Jinwhan
    [J]. OCEANS 2019 - MARSEILLE, 2019,
  • [26] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Pereira, Sergio
    Pinto, Adriano
    Alves, Victor
    Silva, Carlos A.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1240 - 1251
  • [27] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    M. Mohammed Thaha
    K. Pradeep Mohan Kumar
    B. S. Murugan
    S. Dhanasekeran
    P. Vijayakarthick
    A. Senthil Selvi
    [J]. Journal of Medical Systems, 2019, 43
  • [28] Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
    Paul-Louis Pröve
    Eilin Jopp-van Well
    Ben Stanczus
    Michael M. Morlock
    Jochen Herrmann
    Michael Groth
    Dennis Säring
    Markus Auf der Mauer
    [J]. International Journal of Legal Medicine, 2019, 133 : 1191 - 1205
  • [29] Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
    Proeve, Paul-Louis
    Jopp-van Well, Eilin
    Stanczus, Ben
    Morlock, Michael M.
    Herrmann, Jochen
    Groth, Michael
    Saering, Dennis
    der Mauer, Markus Auf
    [J]. INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2019, 133 (04) : 1191 - 1205
  • [30] Automatic segmentation of cerebral MR images using artificial neural networks
    Wilfrid Laurier Univ, Waterloo, Canada
    [J]. IEEE Trans Nucl Sci, 4 pt 2 (2174-2182):