Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks

被引:14
|
作者
Pfister, Martin [1 ,2 ,3 ]
Schuetzenberger, Kornelia [1 ,2 ]
Pfeiffenberger, Ulrike [1 ,2 ]
Messner, Alina [1 ]
Chen, Zhe [1 ]
dos Santos, Valentin Aranha [1 ]
Puchner, Stefan [1 ,2 ,4 ]
Garhoefer, Gerhard [2 ,4 ]
Schmetterer, Leopold [1 ,2 ,4 ,5 ,6 ,7 ]
Groeschl, Martin [3 ]
Werkmeister, Rene M. [1 ,2 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[2] Med Univ Vienna, Christian Doppler Lab Ocular & Dermal Effects Thi, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[3] Vienna Univ Technol, Inst Appl Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[4] Med Univ Vienna, Dept Clin Pharmacol, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[5] The Academia, Singapore Eye Res Inst, 20 Coll Rd,Discovery Tower Level 6, Singapore 169856, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, Novena Campus,11 Mandalay Rd, Singapore 308232, Singapore
[7] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, 8 Coll Rd, Singapore 169857, Singapore
关键词
Compendex;
D O I
10.1364/BOE.10.001315
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at similar to 1310 nm with a bandwidth of 87 nm, providing an axial resolution of similar to 6.5 mu m in tissue. Three-dimensional data sets of a 10 mm x 10 mm skin patch comprising the intradermal filler and the surrounding tissue were acquired. A convolutional neural network using a u-net-like architecture was trained from slices of 100 OCT volume data sets where the dermal filler volume was manually annotated. Using six-fold cross-validation, a mean accuracy of 0.9938 and a Jaccard similarity coefficient of 0.879 were achieved. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1315 / 1328
页数:14
相关论文
共 50 条
  • [21] Semantic segmentation of satellite images of airports using convolutional neural networks
    Gorbachev, V. A.
    Krivorotov, I. A.
    Markelov, A. O.
    Kotlyarova, E., V
    COMPUTER OPTICS, 2020, 44 (04) : 636 - +
  • [22] Power Line Segmentation in Aerial Images Using Convolutional Neural Networks
    Saurav, Sumeet
    Gidde, Prashant
    Singh, Sanjay
    Saini, Ravi
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 11941 LNCS : 623 - 632
  • [23] Semantic Segmentation of Marine Radar Images using Convolutional Neural Networks
    Kim, Keunhwan
    Kim, Jinwhan
    OCEANS 2019 - MARSEILLE, 2019,
  • [24] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Thaha, M. Mohammed
    Kumar, K. Pradeep Mohan
    Murugan, B. S.
    Dhanasekeran, S.
    Vijayakarthick, P.
    Selvi, A. Senthil
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (09)
  • [25] Segmentation of Histopathological Images with Convolutional Neural Networks using Fourier Features
    Hatipolu, Nuh
    Bilgin, Gokhan
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 455 - 458
  • [26] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    M. Mohammed Thaha
    K. Pradeep Mohan Kumar
    B. S. Murugan
    S. Dhanasekeran
    P. Vijayakarthick
    A. Senthil Selvi
    Journal of Medical Systems, 2019, 43
  • [27] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Pereira, Sergio
    Pinto, Adriano
    Alves, Victor
    Silva, Carlos A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1240 - 1251
  • [28] Automated Analysis of Microscopy Images using Deep Convolutional Neural Networks
    Banadaki, Yaser
    Okunoye, Adetayo
    Batra, Sanjay
    Martinez, Eduardo
    Bai, Shuju
    Sharifi, Safura
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV, 2021, 11593
  • [29] Automated Gluten Detection in Bread Images Using Convolutional Neural Networks
    Elyashar, Aviad
    Paradise Vit, Abigail
    Sebbag, Guy
    Khaytin, Alex
    Zakai, Avi
    Applied Sciences (Switzerland), 2025, 15 (04):
  • [30] Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
    Paul-Louis Pröve
    Eilin Jopp-van Well
    Ben Stanczus
    Michael M. Morlock
    Jochen Herrmann
    Michael Groth
    Dennis Säring
    Markus Auf der Mauer
    International Journal of Legal Medicine, 2019, 133 : 1191 - 1205