Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks

被引:14
|
作者
Pfister, Martin [1 ,2 ,3 ]
Schuetzenberger, Kornelia [1 ,2 ]
Pfeiffenberger, Ulrike [1 ,2 ]
Messner, Alina [1 ]
Chen, Zhe [1 ]
dos Santos, Valentin Aranha [1 ]
Puchner, Stefan [1 ,2 ,4 ]
Garhoefer, Gerhard [2 ,4 ]
Schmetterer, Leopold [1 ,2 ,4 ,5 ,6 ,7 ]
Groeschl, Martin [3 ]
Werkmeister, Rene M. [1 ,2 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[2] Med Univ Vienna, Christian Doppler Lab Ocular & Dermal Effects Thi, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[3] Vienna Univ Technol, Inst Appl Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[4] Med Univ Vienna, Dept Clin Pharmacol, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[5] The Academia, Singapore Eye Res Inst, 20 Coll Rd,Discovery Tower Level 6, Singapore 169856, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, Novena Campus,11 Mandalay Rd, Singapore 308232, Singapore
[7] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, 8 Coll Rd, Singapore 169857, Singapore
关键词
Compendex;
D O I
10.1364/BOE.10.001315
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at similar to 1310 nm with a bandwidth of 87 nm, providing an axial resolution of similar to 6.5 mu m in tissue. Three-dimensional data sets of a 10 mm x 10 mm skin patch comprising the intradermal filler and the surrounding tissue were acquired. A convolutional neural network using a u-net-like architecture was trained from slices of 100 OCT volume data sets where the dermal filler volume was manually annotated. Using six-fold cross-validation, a mean accuracy of 0.9938 and a Jaccard similarity coefficient of 0.879 were achieved. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1315 / 1328
页数:14
相关论文
共 50 条
  • [31] Deep convolutional neural networks for automated OCT pathology recognition
    Russakoff, Daniel B.
    Oakley, Jonathan D.
    Chang, Robert
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (08)
  • [32] Comparison Different Vessel Segmentation Methods in Automated Microaneurysms Detection in Retinal Images using Convolutional Neural Networks
    Tavakoli, Meysam
    Nazar, Mahdieh
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [33] Fully Automated Segmentation of Alveolar Bone Using Deep Convolutional Neural Networks from Intraoral Ultrasound Images
    Duong, Dat Q.
    Nguyen, Kim-Cuong T.
    Kaipatur, Neelambar R.
    Lou, Edmond H. M.
    Noga, Michelle
    Major, Paul W.
    Punithakumar, Kumaradevan
    Le, Lawrence H.
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6632 - 6635
  • [34] Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
    Proeve, Paul-Louis
    Jopp-van Well, Eilin
    Stanczus, Ben
    Morlock, Michael M.
    Herrmann, Jochen
    Groth, Michael
    Saering, Dennis
    der Mauer, Markus Auf
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2019, 133 (04) : 1191 - 1205
  • [35] Automated Liver Lesion Segmentation with Convolutional Neural Networks
    Sall, Sean
    Lieman-Sifry, Jesse
    Lau, Felix
    Golden, Daniel
    HEPATOLOGY, 2018, 68 : 186A - 186A
  • [36] Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks
    Morales, Sandra
    Colomer, Adrian
    Mossi, Jose M.
    del Amor, Rocio
    Woldbye, David
    Klemp, Kristian
    Larsen, Michael
    Naranjo, Valery
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 198 (198)
  • [37] RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network
    Sappa, Loza Bekalo
    Okuwobi, Idowu Paul
    Li, Mingchao
    Zhang, Yuhan
    Xie, Sha
    Yuan, Songtao
    Chen, Qiang
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) : 691 - 704
  • [38] RetFluidNet: Retinal Fluid Segmentation for SD-OCT Images Using Convolutional Neural Network
    Loza Bekalo Sappa
    Idowu Paul Okuwobi
    Mingchao Li
    Yuhan Zhang
    Sha Xie
    Songtao Yuan
    Qiang Chen
    Journal of Digital Imaging, 2021, 34 : 691 - 704
  • [39] Automated ventricular segmentation and shunt failure detection using convolutional neural networks
    Kevin T. Huang
    Jack McNulty
    Helweh Hussein
    Neil Klinger
    Melissa M. J. Chua
    Patrick R. Ng
    Joshua Chalif
    Neel H. Mehta
    Omar Arnaout
    Scientific Reports, 14 (1)
  • [40] Unsupervised Image Segmentation using Convolutional Neural Networks for Automated Crop Monitoring
    Bhatt, Prakruti
    Sarangi, Sanat
    Pappula, Srinivasu
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 887 - 893