Classification of Electrical Impedance Tomography Data Using Machine Learning

被引:10
|
作者
Pessoa, Diogo [1 ]
Rocha, Bruno Machado [1 ]
Cheimariotis, Grigorios-Aris [2 ]
Haris, Kostas [2 ]
Strodthoff, Claas [3 ]
Kaimakamis, Evangelos [2 ,4 ]
Maglaveras, Nicos [2 ]
Frerichs, Inez [3 ]
de Carvalho, Paulo [1 ]
Paiva, Rui Pedro [1 ]
机构
[1] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, P-3030290 Coimbra, Portugal
[2] Aristotle Univ Thessaloniki, Lab Comp Med Informat & Biomed Imaging Technol, Thessaloniki 54636, Greece
[3] Univ Med Ctr Schleswig Holstein, Dept Anesthesiol & Intens Care Med, Campus Kiel, Kiel, Germany
[4] G Papanikolaou Gen Hosp, Intens Care Unit 1, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
EIT; Machine Learning; Feature Engineering;
D O I
10.1109/EMBC46164.2021.9629961
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Patients suffering from pulmonary diseases typically exhibit pathological lung ventilation in terms of homogeneity. Electrical Impedance Tomography (EIT) is a non-invasive imaging method that allows to analyze and quantify the distribution of ventilation in the lungs. In this article, we present a new approach to promote the use of EIT data and the implementation of new clinical applications for differential diagnosis, with the development of several machine learning models to discriminate between EIT data from healthy and non-healthy subjects. EIT data from 16 subjects were acquired: 5 healthy and 11 non-healthy subjects (with multiple pulmonary conditions). Preliminary results have shown accuracy percentages of 66% in challenging evaluation scenarios. The results suggest that the pairing of EIT feature engineering methods with machine learning methods could be further explored and applied in the diagnostic and monitoring of patients suffering from lung diseases. Also, we introduce the use of a new feature in the context of EIT data analysis (Impedance Curve Correlation).
引用
收藏
页码:349 / 353
页数:5
相关论文
共 50 条
  • [41] Machine Learning Approaches to Estimate Simulated Cardiac Ejection Fraction from Electrical Impedance Tomography
    Fonseca, Tales L.
    Goliatt, Leonardo
    Campos, Luciana C. D.
    Bastos, Flavia S.
    Barra, Luis Paulo S.
    dos Santos, Rodrigo W.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2016, 2016, 10022 : 235 - 246
  • [42] Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax
    Ivanenko, Mikhail
    Smolik, Waldemar T.
    Wanta, Damian
    Midura, Mateusz
    Wroblewski, Przemyslaw
    Hou, Xiaohan
    Yan, Xiaoheng
    SENSORS, 2023, 23 (18)
  • [43] Time Sequence Learning for Electrical Impedance Tomography Using Bayesian Spatiotemporal Priors
    Liu, Shengheng
    Cao, Ruisong
    Huang, Yongming
    Ouypornkochagorn, Taweechai
    Ji, Jiabin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (09) : 6045 - 6057
  • [44] A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control
    Wu, Yu
    Jiang, Dai
    Liu, Xiao
    Bayford, Richard
    Demosthenous, Andreas
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2018, 12 (06) : 1322 - 1333
  • [45] Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography
    Pandeya, Sarbesh R.
    Nagy, Janice A.
    Riveros, Daniela
    Semple, Carson
    Taylor, Rebecca S.
    Hu, Alice
    Sanchez, Benjamin
    Rutkove, Seward B.
    MUSCLE & NERVE, 2022, 66 (03) : 354 - 361
  • [46] Incremental Learning for Classification of Unstructured Data Using Extreme Learning Machine
    Madhusudhanan, Sathya
    Jaganathan, Suresh
    Jayashree, L. S.
    ALGORITHMS, 2018, 11 (10)
  • [47] Muscle Mass Measurement Using Machine Learning Algorithms with Electrical Impedance Myography
    Cheng, Kuo-Sheng
    Su, Ya-Ling
    Kuo, Li-Chieh
    Yang, Tai-Hua
    Lee, Chia-Lin
    Chen, Wenxi
    Liu, Shing-Hong
    SENSORS, 2022, 22 (08)
  • [48] Supervised Descent Learning for Thoracic Electrical Impedance Tomography
    Zhang, Ke
    Guo, Rui
    Li, Maokun
    Yang, Fan
    Xu, Shenheng
    Abubakar, Aria
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (04) : 1360 - 1369
  • [49] Ensemble learning for monitoring process in electrical impedance tomography
    Klosowski, Grzegorz
    Rymarczyk, Tomasz
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2022, 69 (02) : 169 - 178
  • [50] Deep Learning Scheme PSPNet for Electrical Impedance Tomography
    Wang, Peng
    Chen, Haofeng
    Ma, Gang
    Li, Rui
    Wang, Xiaojie
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2021, 2021, 11591