Classification of Electrical Impedance Tomography Data Using Machine Learning

被引:10
|
作者
Pessoa, Diogo [1 ]
Rocha, Bruno Machado [1 ]
Cheimariotis, Grigorios-Aris [2 ]
Haris, Kostas [2 ]
Strodthoff, Claas [3 ]
Kaimakamis, Evangelos [2 ,4 ]
Maglaveras, Nicos [2 ]
Frerichs, Inez [3 ]
de Carvalho, Paulo [1 ]
Paiva, Rui Pedro [1 ]
机构
[1] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, P-3030290 Coimbra, Portugal
[2] Aristotle Univ Thessaloniki, Lab Comp Med Informat & Biomed Imaging Technol, Thessaloniki 54636, Greece
[3] Univ Med Ctr Schleswig Holstein, Dept Anesthesiol & Intens Care Med, Campus Kiel, Kiel, Germany
[4] G Papanikolaou Gen Hosp, Intens Care Unit 1, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
EIT; Machine Learning; Feature Engineering;
D O I
10.1109/EMBC46164.2021.9629961
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Patients suffering from pulmonary diseases typically exhibit pathological lung ventilation in terms of homogeneity. Electrical Impedance Tomography (EIT) is a non-invasive imaging method that allows to analyze and quantify the distribution of ventilation in the lungs. In this article, we present a new approach to promote the use of EIT data and the implementation of new clinical applications for differential diagnosis, with the development of several machine learning models to discriminate between EIT data from healthy and non-healthy subjects. EIT data from 16 subjects were acquired: 5 healthy and 11 non-healthy subjects (with multiple pulmonary conditions). Preliminary results have shown accuracy percentages of 66% in challenging evaluation scenarios. The results suggest that the pairing of EIT feature engineering methods with machine learning methods could be further explored and applied in the diagnostic and monitoring of patients suffering from lung diseases. Also, we introduce the use of a new feature in the context of EIT data analysis (Impedance Curve Correlation).
引用
收藏
页码:349 / 353
页数:5
相关论文
共 50 条
  • [31] Image-based classification of bladder state using electrical impedance tomography
    Dunne, Eoghan
    Santorelli, Adam
    McGinley, Brian
    Leader, Geraldine
    O'Halloran, Martin
    Porter, Emily
    PHYSIOLOGICAL MEASUREMENT, 2018, 39 (12)
  • [32] Solving electrical impedance tomography with deep learning
    Fan, Yuwei
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 404
  • [33] Predicting the Electrical Impedance of Rolling Bearings Using Machine Learning Methods
    Kirchner, Eckhard
    Bienefeld, Christoph
    Schirra, Tobias
    Moltschanov, Alexander
    MACHINES, 2022, 10 (02)
  • [34] Machine learning estimation of an arterial pressure model using electrical impedance
    Augusto Romero-Beltran, Cesar
    Murillo Riascos, Yan Carlos
    Mauricio Gonzalez-Vargas, Andres
    Jairo Cabrera-Lopez, John
    2022 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (COLCACI 2022), 2022,
  • [35] Integrated data collection in electrical impedance tomography
    Hong, Sha
    Yan, Wang
    Shu, Zhao
    Chaoshi, Ren
    13TH INTERNATIONAL CONFERENCE ON ELECTRICAL BIOIMPEDANCE AND THE 8TH CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY 2007, 2007, 17 : 348 - 351
  • [36] Recognition and Classification of Electrical Treeing Images using Machine Learning
    Shiozaki Y.
    Jeon H.-G.
    Ihori H.
    IEEJ Transactions on Fundamentals and Materials, 2023, 143 (08) : 282 - 283
  • [37] Comparing machine learning algorithms for non-invasive detection and classification of failure in piezoresistive bone cement via electrical impedance tomography
    Keiderling, L.
    Rosendorf, J.
    Owens, C. E.
    Varadarajan, K. M.
    Hart, A. J.
    Schwab, J.
    Tallman, T. N.
    Ghaednia, H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (12):
  • [38] Sensor data classification using machine learning algorithm
    Rose, Lina
    Mary, X. Anitha
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2020, 23 (02): : 363 - 371
  • [39] Classification of Logging Data Using Machine Learning Algorithms
    Mukhamediev, Ravil
    Kuchin, Yan
    Yunicheva, Nadiya
    Kalpeyeva, Zhuldyz
    Muhamedijeva, Elena
    Gopejenko, Viktors
    Rystygulov, Panabek
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [40] Classification of Psoriasis Microarray Data using Machine Learning
    Azam, Siti Nor Zulaika Nor
    Zakaria, Noor Hidayah
    Hassan, Rohayanti
    Zulkifle, Farizuwana Akma
    2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 245 - 249