Classification of Electrical Impedance Tomography Data Using Machine Learning

被引:10
|
作者
Pessoa, Diogo [1 ]
Rocha, Bruno Machado [1 ]
Cheimariotis, Grigorios-Aris [2 ]
Haris, Kostas [2 ]
Strodthoff, Claas [3 ]
Kaimakamis, Evangelos [2 ,4 ]
Maglaveras, Nicos [2 ]
Frerichs, Inez [3 ]
de Carvalho, Paulo [1 ]
Paiva, Rui Pedro [1 ]
机构
[1] Univ Coimbra, Ctr Informat & Syst, Dept Informat Engn, P-3030290 Coimbra, Portugal
[2] Aristotle Univ Thessaloniki, Lab Comp Med Informat & Biomed Imaging Technol, Thessaloniki 54636, Greece
[3] Univ Med Ctr Schleswig Holstein, Dept Anesthesiol & Intens Care Med, Campus Kiel, Kiel, Germany
[4] G Papanikolaou Gen Hosp, Intens Care Unit 1, Thessaloniki, Greece
基金
欧盟地平线“2020”;
关键词
EIT; Machine Learning; Feature Engineering;
D O I
10.1109/EMBC46164.2021.9629961
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Patients suffering from pulmonary diseases typically exhibit pathological lung ventilation in terms of homogeneity. Electrical Impedance Tomography (EIT) is a non-invasive imaging method that allows to analyze and quantify the distribution of ventilation in the lungs. In this article, we present a new approach to promote the use of EIT data and the implementation of new clinical applications for differential diagnosis, with the development of several machine learning models to discriminate between EIT data from healthy and non-healthy subjects. EIT data from 16 subjects were acquired: 5 healthy and 11 non-healthy subjects (with multiple pulmonary conditions). Preliminary results have shown accuracy percentages of 66% in challenging evaluation scenarios. The results suggest that the pairing of EIT feature engineering methods with machine learning methods could be further explored and applied in the diagnostic and monitoring of patients suffering from lung diseases. Also, we introduce the use of a new feature in the context of EIT data analysis (Impedance Curve Correlation).
引用
收藏
页码:349 / 353
页数:5
相关论文
共 50 条
  • [21] Classification and Characterization of Damage in Composite Laminates Using Electrical Resistance Tomography and Supervised Machine Learning
    Diaz-Escobar, Julia
    Diaz-Montiel, Paulina
    Venkataraman, Satchi
    Diaz-Ramirez, Arnoldo
    STRUCTURAL CONTROL & HEALTH MONITORING, 2023, 2023
  • [22] Electrical impedance tomography imaging using a priori ultrasound data
    Manuchehr Soleimani
    BioMedical Engineering OnLine, 5
  • [23] Electrical impedance tomography imaging using a priori ultrasound data
    Soleimani, Manuchehr
    BIOMEDICAL ENGINEERING ONLINE, 2006, 5 (1)
  • [24] Sweep data of electrical impedance tomography
    Hakula, Harri
    Harhanen, Lauri
    Hyvonen, Nuutti
    INVERSE PROBLEMS, 2011, 27 (11)
  • [25] Seismic Data Classification using Machine Learning
    Li, Wenrui
    Nakshatra
    Narvekar, Nishita
    Raut, Nitisha
    Sirkeci, Birsen
    Gao, Jerry
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2018), 2018, : 56 - 63
  • [26] Electrode Placement Optimization for Electrical Impedance Tomography Using Active Learning
    Lee, Junhyeong
    Park, Kyungseo
    Park, Kundo
    Kim, Yongtae
    Kim, Jung
    Ryu, Seunghwa
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (11)
  • [27] Machine learning-directed electrical impedance tomography to predict metabolically vulnerable plaques
    Chen, Justin
    Wang, Shaolei
    Wang, Kaidong
    Abiri, Parinaz
    Huang, Zi-Yu
    Yin, Junyi
    Jabalera, Alejandro M.
    Arianpour, Brian
    Roustaei, Mehrdad
    Zhu, Enbo
    Zhao, Peng
    Cavallero, Susana
    Duarte-Vogel, Sandra
    Stark, Elena
    Luo, Yuan
    Benharash, Peyman
    Tai, Yu-Chong
    Cui, Qingyu
    Hsiai, Tzung K.
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2024, 9 (01)
  • [28] Comparison of Machine Learning Classifiers for the Detection of Breast Cancer in an Electrical Impedance Tomography Setup
    Rixen, Joeran
    Blass, Nico
    Lyra, Simon
    Leonhardt, Steffen
    ALGORITHMS, 2023, 16 (11)
  • [29] Applied machine learning for stroke differentiation by electrical impedance tomography with realistic numerical models
    Culpepper, Jared
    Lee, Hannah
    Santorelli, Adam
    Porter, Emily
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (01):
  • [30] Classification of Hemorrhage Using Priori Information of Electrode Arrangement With Electrical Impedance Tomography
    Tian, Zhiwei
    Shi, Yanyan
    Wang, Can
    Wang, Meng
    Shen, Ke
    IEEE ACCESS, 2023, 11 : 31355 - 31364