Seismic Data Classification using Machine Learning

被引:12
|
作者
Li, Wenrui [1 ]
Nakshatra [2 ]
Narvekar, Nishita [2 ]
Raut, Nitisha [2 ]
Sirkeci, Birsen [2 ]
Gao, Jerry [2 ]
机构
[1] Nanjing Xiao Zhuang Univ, Sch Informat Engn, Nanjing, Peoples R China
[2] San Jose State Univ, Dept Software Engn, San Jose, CA 95192 USA
关键词
Earthquake; Seismic waveform; S and P waves; Machine learning; Epicenter; Noise removal; obspy; SVM; Decision Tree; Random forest;
D O I
10.1109/BigDataService.2018.00017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Earthquakes around the world have been a cause of major destruction and loss of life and property. An early detection and prediction system using machine learning classification models can prove to be very useful for disaster management teams. The earthquake stations continuously collect data even when there is no event. From this data, we need to distinguish earthquake and non-earthquake. Machine learning techniques can be used to analyze continuous time series data to detect earthquakes effectively. Furthermore, the earthquake data can be used to predict the P-wave and S-wave arrival times.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 50 条
  • [1] Rapid classification of local seismic events using machine learning
    Jia, Luozhao
    Chen, Hongfeng
    Xing, Kang
    [J]. JOURNAL OF SEISMOLOGY, 2022, 26 (05) : 897 - 912
  • [2] Rapid classification of local seismic events using machine learning
    Luozhao Jia
    Hongfeng Chen
    Kang Xing
    [J]. Journal of Seismology, 2022, 26 : 897 - 912
  • [3] Classification of Logging Data Using Machine Learning Algorithms
    Mukhamediev, Ravil
    Kuchin, Yan
    Yunicheva, Nadiya
    Kalpeyeva, Zhuldyz
    Muhamedijeva, Elena
    Gopejenko, Viktors
    Rystygulov, Panabek
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [4] Sensor data classification using machine learning algorithm
    Rose, Lina
    Mary, X. Anitha
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2020, 23 (02): : 363 - 371
  • [5] Classification of Psoriasis Microarray Data using Machine Learning
    Azam, Siti Nor Zulaika Nor
    Zakaria, Noor Hidayah
    Hassan, Rohayanti
    Zulkifle, Farizuwana Akma
    [J]. 2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 245 - 249
  • [6] CLASSIFICATION OF SEISMIC PHASES BASED ON MACHINE LEARNING
    Marat, Nurtas
    Zharasbek, Baishemirov
    Madi, Tastanov
    Zhandos, Zhanabekov
    Victor, Tsay
    [J]. NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2020, 5 (333): : 33 - 42
  • [7] Machine Learning Based Seismic Region Classification
    Oliveira, Samuel da S.
    Canuto, Anne M. P.
    Carvalho, Bruno M.
    Kreutz, Marcio E.
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [8] Incremental Learning for Classification of Unstructured Data Using Extreme Learning Machine
    Madhusudhanan, Sathya
    Jaganathan, Suresh
    Jayashree, L. S.
    [J]. ALGORITHMS, 2018, 11 (10)
  • [9] Automatic Multichannel Volcano-Seismic Classification Using Machine Learning and EMD
    Espinoza Lara, Pablo Eduardo
    Rolim Fernandes, Carlos Alexandre
    Inza, Adolfo
    Mars, Jerome I.
    Metaxian, Jean-Philippe
    Dalla Mura, Mauro
    Malfante, Marielle
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 1322 - 1331
  • [10] Classification of SDSS photometric data using machine learning on a cloud
    Acharya, Vishwanath
    Bora, Piyush Singh
    Navin, Karri
    Nazareth, Anisha
    Anusha, P. S.
    Rao, Shrisha
    [J]. CURRENT SCIENCE, 2018, 115 (02): : 249 - 257