Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography

被引:10
|
作者
Pandeya, Sarbesh R. [1 ]
Nagy, Janice A. [1 ]
Riveros, Daniela [1 ]
Semple, Carson [1 ]
Taylor, Rebecca S. [1 ]
Hu, Alice [2 ]
Sanchez, Benjamin [3 ]
Rutkove, Seward B. [1 ]
机构
[1] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Neurol, Boston, MA 02115 USA
[2] Myolex Inc, Brookline, MA USA
[3] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT USA
基金
美国国家卫生研究院;
关键词
amyotrophic lateral sclerosis; classification; electrical impedance; machine learning; muscle; muscular dystrophy; SPINAL MUSCULAR-ATROPHY; CLASSIFICATION;
D O I
10.1002/mus.27664
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction/Aims We assessed the classification performance of machine learning (ML) using multifrequency electrical impedance myography (EIM) values to improve upon diagnostic outcomes as compared to those based on a single EIM value. Methods EIM data was obtained from unilateral excised gastrocnemius in eighty diseased mice (26 D2-mdx, Duchenne muscular dystrophy model, 39 SOD1G93A ALS model, and 15 db/db, a model of obesity-induced muscle atrophy) and 33 wild-type (WT) animals. We assessed the classification performance of a ML random forest algorithm incorporating all the data (multifrequency resistance, reactance and phase values) comparing it to the 50 kHz phase value alone. Results ML outperformed the 50 kHz analysis as based on receiver-operating characteristic curves and measurement of the area under the curve (AUC). For example, comparing all diseases together versus WT from the test set outputs, the AUC was 0.52 for 50 kHz phase, but was 0.94 for the ML model. Similarly, when comparing ALS versus WT, the AUCs were 0.79 for 50 kHz phase and 0.99 for ML. Discussion Multifrequency EIM using ML improves upon classification compared to that achieved with a single-frequency value. ML approaches should be considered in all future basic and clinical diagnostic applications of EIM.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 50 条
  • [1] Muscle Mass Measurement Using Machine Learning Algorithms with Electrical Impedance Myography
    Cheng, Kuo-Sheng
    Su, Ya-Ling
    Kuo, Li-Chieh
    Yang, Tai-Hua
    Lee, Chia-Lin
    Chen, Wenxi
    Liu, Shing-Hong
    SENSORS, 2022, 22 (08)
  • [2] USING ELECTRICAL IMPEDANCE MYOGRAPHY TO EVALUATE TONGUE HEALTH
    McIlduff, C. E.
    Gesibush, T. R.
    Mijailovic, A.
    Yim, S. J.
    Rutkove, S. B.
    MUSCLE & NERVE, 2014, 50 : S5 - S6
  • [3] Machine learning-enhanced electrical impedance myography to diagnose and track spinal muscular atrophy progression
    Cobb, Buket Sonbas
    Kolb, Stephen J.
    Rutkove, Seward B.
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (09)
  • [4] A comparative study of selected machine learning algorithms for electrical impedance tomography
    Dziadosz, Marcin
    Mazurek, Mariusz
    Stefaniak, Barbara
    Wojcik, Dariusz
    Gauda, Konrad
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (04): : 237 - 240
  • [5] Assessing disuse change in muscle using electrical impedance myography
    Tarulli, Andrew
    Esper, Gregory
    Shiffman, Carl A.
    Aaron, Ronald
    Chin, Anne B.
    Lee, Kyungmouk S.
    Rutkove, Seward
    NEUROLOGY, 2007, 68 (12) : A374 - A374
  • [6] Prediction of Optimum Operating Parameters to Enhance the Performance of PEMFC Using Machine Learning Algorithms
    Arunadevi, M.
    Karthikeyan, B.
    Shrihari, Anirudh
    Saravanan, S.
    Sundararaju, K.
    Palanisamy, R.
    Awad, Mohamed
    Mahmoud, Mohamed Metwally
    Wapet, Daniel Eutyche Mbadjoun
    Al Ayidh, Abdulrahman
    Hussein, Hany S.
    Hussein, Mahmoud M.
    Omar, Ahmed I.
    ENERGY EXPLORATION & EXPLOITATION, 2025, 43 (02) : 676 - 698
  • [7] INNOVATIVE ASSESSMENT OF MUSCLE INJURY USING ELECTRICAL IMPEDANCE MYOGRAPHY
    Reddy, Divya
    Humbert, Sarah
    de Bie, Evan
    Nicorici, Alina
    Han, Jay
    MUSCLE & NERVE, 2016, 54 (03) : 529 - 529
  • [8] Bearing fault diagnostic using machine learning algorithms
    Sawaqed, Laith S.
    Alrayes, Ayman M.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2020, 9 (04) : 341 - 350
  • [9] Bearing fault diagnostic using machine learning algorithms
    Laith S. Sawaqed
    Ayman M. Alrayes
    Progress in Artificial Intelligence, 2020, 9 : 341 - 350
  • [10] Microplastic Identification Using Impedance Spectroscopy and Machine Learning Algorithms
    Sarmiento, Juan
    Anaya, Maribel
    Tibaduiza, Diego
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2024, 2024