Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography

被引:10
|
作者
Pandeya, Sarbesh R. [1 ]
Nagy, Janice A. [1 ]
Riveros, Daniela [1 ]
Semple, Carson [1 ]
Taylor, Rebecca S. [1 ]
Hu, Alice [2 ]
Sanchez, Benjamin [3 ]
Rutkove, Seward B. [1 ]
机构
[1] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Neurol, Boston, MA 02115 USA
[2] Myolex Inc, Brookline, MA USA
[3] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT USA
基金
美国国家卫生研究院;
关键词
amyotrophic lateral sclerosis; classification; electrical impedance; machine learning; muscle; muscular dystrophy; SPINAL MUSCULAR-ATROPHY; CLASSIFICATION;
D O I
10.1002/mus.27664
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction/Aims We assessed the classification performance of machine learning (ML) using multifrequency electrical impedance myography (EIM) values to improve upon diagnostic outcomes as compared to those based on a single EIM value. Methods EIM data was obtained from unilateral excised gastrocnemius in eighty diseased mice (26 D2-mdx, Duchenne muscular dystrophy model, 39 SOD1G93A ALS model, and 15 db/db, a model of obesity-induced muscle atrophy) and 33 wild-type (WT) animals. We assessed the classification performance of a ML random forest algorithm incorporating all the data (multifrequency resistance, reactance and phase values) comparing it to the 50 kHz phase value alone. Results ML outperformed the 50 kHz analysis as based on receiver-operating characteristic curves and measurement of the area under the curve (AUC). For example, comparing all diseases together versus WT from the test set outputs, the AUC was 0.52 for 50 kHz phase, but was 0.94 for the ML model. Similarly, when comparing ALS versus WT, the AUCs were 0.79 for 50 kHz phase and 0.99 for ML. Discussion Multifrequency EIM using ML improves upon classification compared to that achieved with a single-frequency value. ML approaches should be considered in all future basic and clinical diagnostic applications of EIM.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 50 条
  • [21] Piezoresistive nanocomposite sensing using electrical impedance tomography and machine learning
    Alawy, A.
    Mostaghimi, H.
    Amani, S.
    Rezvani, S.
    Park, S. S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 377
  • [22] Predicting the Electrical Impedance of Rolling Bearings Using Machine Learning Methods
    Kirchner, Eckhard
    Bienefeld, Christoph
    Schirra, Tobias
    Moltschanov, Alexander
    MACHINES, 2022, 10 (02)
  • [23] Machine learning estimation of an arterial pressure model using electrical impedance
    Augusto Romero-Beltran, Cesar
    Murillo Riascos, Yan Carlos
    Mauricio Gonzalez-Vargas, Andres
    Jairo Cabrera-Lopez, John
    2022 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (COLCACI 2022), 2022,
  • [24] Classification of Wood Chips Using Electrical Impedance Spectroscopy and Machine Learning
    Tiitta, Markku
    Tiitta, Valtteri
    Heikkinen, Jorma
    Lappalainen, Reijo
    Tomppo, Laura
    SENSORS, 2020, 20 (04)
  • [25] Classification of breast tumour using electrical impedance and machine learning techniques
    Al Amin, Abdullah
    Parvin, Shahnaj
    Kadir, M. A.
    Tahmid, Tasmia
    Alam, S. Kaisar
    Rabbani, K. Siddique-e
    PHYSIOLOGICAL MEASUREMENT, 2014, 35 (06) : 965 - 974
  • [26] Hybrid machine learning in electrical impedance tomography
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Guzik, Miroslaw
    Niderla, Konrad
    Lipski, Jerzy
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 169 - 172
  • [27] Equivalent Electrical Circuit recommendation for Electrochemical Impedance Spectroscopy: A benchmark of different Machine Learning algorithms
    Saez-Pardo, Fermin
    Giner-Sanz, Juan Jose
    Perez-Herranz, Valentin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 976
  • [28] Machine learning for predictive electrical performance using OCD
    Das, Sayantan
    Hung, Joey
    Halder, Sandip
    Koret, Roy
    Turovets, Igor
    Saib, Mohamed
    Charley, Anne-Laure
    Sendelbach, Matthew
    Ger, Avron
    Leray, Philippe
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXIII, 2019, 10959
  • [29] Analyzing Temperature Dependence of Electrical Impedance Myography Parameters using Finite Element Model
    Rabbi, Khondokar M. F.
    Baidya, Somen
    Ahad, Mohammad A.
    IEEE SOUTHEASTCON 2015, 2015,
  • [30] Joint Angle and Torque Estimation Using Multifrequency Electrical Impedance Myography and Surface Electromyography
    Schouten, Martijn
    Baars, Ewout C.
    Yavuz, Utku S.
    Krijnen, Gijs
    IEEE SENSORS JOURNAL, 2024, 24 (20) : 32651 - 32659