Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography

被引:10
|
作者
Pandeya, Sarbesh R. [1 ]
Nagy, Janice A. [1 ]
Riveros, Daniela [1 ]
Semple, Carson [1 ]
Taylor, Rebecca S. [1 ]
Hu, Alice [2 ]
Sanchez, Benjamin [3 ]
Rutkove, Seward B. [1 ]
机构
[1] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Neurol, Boston, MA 02115 USA
[2] Myolex Inc, Brookline, MA USA
[3] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT USA
基金
美国国家卫生研究院;
关键词
amyotrophic lateral sclerosis; classification; electrical impedance; machine learning; muscle; muscular dystrophy; SPINAL MUSCULAR-ATROPHY; CLASSIFICATION;
D O I
10.1002/mus.27664
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction/Aims We assessed the classification performance of machine learning (ML) using multifrequency electrical impedance myography (EIM) values to improve upon diagnostic outcomes as compared to those based on a single EIM value. Methods EIM data was obtained from unilateral excised gastrocnemius in eighty diseased mice (26 D2-mdx, Duchenne muscular dystrophy model, 39 SOD1G93A ALS model, and 15 db/db, a model of obesity-induced muscle atrophy) and 33 wild-type (WT) animals. We assessed the classification performance of a ML random forest algorithm incorporating all the data (multifrequency resistance, reactance and phase values) comparing it to the 50 kHz phase value alone. Results ML outperformed the 50 kHz analysis as based on receiver-operating characteristic curves and measurement of the area under the curve (AUC). For example, comparing all diseases together versus WT from the test set outputs, the AUC was 0.52 for 50 kHz phase, but was 0.94 for the ML model. Similarly, when comparing ALS versus WT, the AUCs were 0.79 for 50 kHz phase and 0.99 for ML. Discussion Multifrequency EIM using ML improves upon classification compared to that achieved with a single-frequency value. ML approaches should be considered in all future basic and clinical diagnostic applications of EIM.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 50 条
  • [41] Applying machine learning to enhance the cache performance using reuse distance
    Jose, Jobin
    Ramasubramanian, N.
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (04) : 1195 - 1216
  • [42] Some Methods for Substantiating Diagnostic Decisions Made Using Machine Learning Algorithms
    Losev, A. G.
    Popov, I. E.
    Petrenko, A. Yu
    Gudkov, A. G.
    Vesnin, S. G.
    Chizhikov, S., V
    BIOMEDICAL ENGINEERING-MEDITSINSKAYA TEKNIKA, 2022, 55 (06): : 442 - 447
  • [43] Identification of important symptoms and diagnostic hypothyroidism patients using machine learning algorithms
    Rad, Salahuddin Rakhshani
    Mohammadi, Zahra H.
    Zadeh, Mahdieh J.
    Mosleh-Shirazi, Mohammad A.
    Dehesh, Tania
    ANNALS OF MEDICINE AND SURGERY, 2024, 86 (06): : 3233 - 3241
  • [44] Applying machine learning to enhance the cache performance using reuse distance
    Jobin Jose
    N. Ramasubramanian
    Evolutionary Intelligence, 2023, 16 : 1195 - 1216
  • [45] Some Methods for Substantiating Diagnostic Decisions Made Using Machine Learning Algorithms
    A. G. Losev
    I. E. Popov
    A. Yu. Petrenko
    A. G. Gudkov
    S. G. Vesnin
    S. V. Chizhikov
    Biomedical Engineering, 2022, 55 : 442 - 447
  • [46] Evaluation of electrical load demand forecasting using various machine learning algorithms
    Jain, Akanksha
    Gupta, S. C.
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [47] Historical Buildings Dampness Analysis Using Electrical Tomography and Machine Learning Algorithms
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Hola, Anna
    Hola, Jerzy
    Sikora, Jan
    Tchorzewski, Pawel
    Skowron, Lukasz
    ENERGIES, 2021, 14 (05)
  • [48] Optimizing electrical impedance myography measurements by using a multifrequency ratio: A study in Duchenne muscular dystrophy
    Schwartz, Stefan
    Geisbush, Tom R.
    Mijailovic, Aleksandar
    Pasternak, Amy
    Darras, Basil T.
    Rutkove, Seward B.
    CLINICAL NEUROPHYSIOLOGY, 2015, 126 (01) : 202 - 208
  • [49] Object Analysis Using Machine Learning to Solve Inverse Problem in Electrical Impedance Tomography
    Rymarczyk, Tomasz
    Kozlowski, Edward
    Klosowski, Grzegorz
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 220 - 225
  • [50] Rapid recognition of processed milk type using electrical impedance spectroscopy and machine learning
    Huang, Ziyu
    Xiao, Yanghao
    Xiao, Yuhui
    Cai, Honghao
    Ni, Hui
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2023, 58 (06): : 3121 - 3134