Some Progress in Conformal Geometry

被引:11
|
作者
Chang, Sun-Yung A. [1 ]
Qing, Jie [2 ]
Yang, Paul [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Bach flat metrics; bubble tree structure; degeneration of metrics; conformally compact; Einstein; renormalized volume;
D O I
10.3842/SIGMA.2007.122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the sigma(2)-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Conformal geometry on a surface
    Comenetz, G
    ANNALS OF MATHEMATICS, 1938, 39 : 863 - 871
  • [22] Surfaces in conformal geometry
    Willmore, TJ
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (3-4) : 255 - 264
  • [23] Conformal geometry of foliations
    Langevin, Remi
    Walczak, Pawel G.
    GEOMETRIAE DEDICATA, 2008, 132 (01) : 135 - 178
  • [24] Conformal geometry of foliations
    Rémi Langevin
    Paweł G. Walczak
    Geometriae Dedicata, 2008, 132 : 135 - 178
  • [25] GEOMETRY OF CONFORMAL MECHANICS
    IVANOV, E
    KRIVONOS, S
    LEVIANT, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (04): : 345 - 354
  • [26] On conformal differential geometry I The conformal gradient
    van Dantzig, D
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1934, 37 (1/5): : 216 - 221
  • [27] Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
    Li, Yanlin
    Dey, Santu
    Pahan, Sampa
    Ali, Akram
    OPEN MATHEMATICS, 2022, 20 (01): : 574 - 589
  • [28] Some recent progress in non-K?hler geometry
    Fangyang Zheng
    Science China(Mathematics), 2019, 62 (11) : 2423 - 2434
  • [29] Some recent progress in non-Kähler geometry
    Fangyang Zheng
    Science China Mathematics, 2019, 62 : 2423 - 2434
  • [30] Quasi-conformal geometry and hyperbolic geometry
    Bourdon, M
    Pajot, H
    RIGIDITY IN DYNAMICS AND GEOMETRY: CONTRIBUTIONS FROM THE PROGRAMME ERGODIC THEORY, GEOMETRIC RIGIDITY AND NUMBER THEORY, 2002, : 1 - 17