Some Progress in Conformal Geometry

被引:11
|
作者
Chang, Sun-Yung A. [1 ]
Qing, Jie [2 ]
Yang, Paul [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Bach flat metrics; bubble tree structure; degeneration of metrics; conformally compact; Einstein; renormalized volume;
D O I
10.3842/SIGMA.2007.122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the sigma(2)-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Conformal geometry of horn angles
    Kasner, E
    Comenetz, G
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1936, 22 : 303 - 309
  • [42] Scattering matrix in conformal geometry
    C. Robin Graham
    Maciej Zworski
    Inventiones mathematicae, 2003, 152 : 89 - 118
  • [43] CONFORMAL GEOMETRY AND EINSTEINS EQUATION
    MIKLASHEVSKII, IR
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1987, 21 (04) : 327 - 329
  • [44] Twistor geometry of conformal infinity
    Penrose, R
    CONFORMAL STRUCTURE OF SPACE-TIME: GEOMETRY, ANALYSIS, NUMERICS, 2002, 604 : 113 - 121
  • [45] Weakly conformal Finsler geometry
    Rafie-Rad, Mehdi
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1745 - 1755
  • [46] Conformal geometry and brain flattening
    Angenent, S
    Haker, S
    Tannenbaum, A
    Kikinis, R
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI'99, PROCEEDINGS, 1999, 1679 : 271 - 278
  • [47] DUALITY THEOREMS IN CONFORMAL GEOMETRY
    GASQUI, J
    GOLDSCHMIDT, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (02): : 99 - 102
  • [48] ON THE FOUNDATIONS OF THE MINKOWSKI CONFORMAL GEOMETRY
    POPOVICI, I
    RADULESCU, DC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 295 (04): : 341 - 344
  • [49] DUALITY THEOREMS IN CONFORMAL GEOMETRY
    GOLDSCHMIDT, H
    LECTURE NOTES IN PHYSICS, 1983, 180 : 8 - 15
  • [50] CR geometry and conformal foliations
    Baird, Paul
    Eastwood, Michael
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (01) : 73 - 90