Some Progress in Conformal Geometry

被引:11
|
作者
Chang, Sun-Yung A. [1 ]
Qing, Jie [2 ]
Yang, Paul [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Bach flat metrics; bubble tree structure; degeneration of metrics; conformally compact; Einstein; renormalized volume;
D O I
10.3842/SIGMA.2007.122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the sigma(2)-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Conformal geometry, contact geometry, and the calculus of variations
    Viaclovsky, JA
    DUKE MATHEMATICAL JOURNAL, 2000, 101 (02) : 283 - 316
  • [32] Conformal differential geometry curves in conformal euclidean spaces
    Haantjes, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1941, 44 (6/10): : 814 - 824
  • [33] Braided geometry of the conformal algebra
    Majid, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) : 6495 - 6509
  • [34] Qubit Geometry and Conformal Mapping
    Lee, Jae-weon
    Kim, Chang Ho
    Lee, Eok Kyun
    Kim, Jaewan
    Lee, Soonchil
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 129 - 134
  • [35] Conformal Lorentz geometry revisited
    Teleman, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) : 1076 - 1085
  • [36] Differential equations and conformal geometry
    Frittelli, S
    Kamran, N
    Newman, ET
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 43 (2-3) : 133 - 145
  • [37] Conformal geometry from entanglement
    Kim, Isaac H.
    Li, Xiang
    Lin, Ting-Chun
    Mcgreevy, John
    Shi, Bowen
    SCIPOST PHYSICS, 2025, 18 (03):
  • [38] CR geometry and conformal foliations
    Paul Baird
    Michael Eastwood
    Annals of Global Analysis and Geometry, 2013, 44 : 73 - 90
  • [39] JET ISOMORPHISM FOR CONFORMAL GEOMETRY
    Graham, C. Robin
    ARCHIVUM MATHEMATICUM, 2007, 43 (05): : 389 - 415