Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs

被引:19
|
作者
Das, Kinkar Ch [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Graph; Signless Laplacian matrix; The largest signless Laplacian eigenvalue; The smallest signless Laplacian eigenvalue; SPECTRUM;
D O I
10.1016/j.disc.2011.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovic et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010)[1], Oliveira et al. (2010) [14]). Here we prove two conjectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 50 条
  • [41] On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs
    S. Pirzada
    Hilal A. Ganie
    A. Alhevaz
    M. Baghipur
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1143 - 1163
  • [42] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [43] Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths
    Yue, Junjie
    Zhang, Liping
    Lu, Mei
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 623 - 645
  • [44] Correction to: Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 1551 - 1552
  • [45] Notes on the sum of powers of the signless Laplacian eigenvalues of graphs
    You, Lihua
    Yang, Jieshan
    ARS COMBINATORIA, 2014, 117 : 85 - 94
  • [46] Bounds for peripheral distance signless Laplacian eigenvalues of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    Ramane, H. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [47] On eigenvalues of the reciprocal distance signless Laplacian matrix of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Alizadeh, Yaser
    Pirzada, Shariefuddin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)
  • [48] ON THE SUM OF THE POWERS OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Pirzada, S.
    Ganie, Hilal A.
    Alhevaz, A.
    Baghipur, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1143 - 1163
  • [49] Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths
    Junjie Yue
    Liping Zhang
    Mei Lu
    Frontiers of Mathematics in China, 2016, 11 : 623 - 645
  • [50] Edge perturbation on graphs with clusters: Adjacency, Laplacian and signless Laplacian eigenvalues
    Cardoso, Domingos M.
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 113 - 128