Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs

被引:19
|
作者
Das, Kinkar Ch [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Graph; Signless Laplacian matrix; The largest signless Laplacian eigenvalue; The smallest signless Laplacian eigenvalue; SPECTRUM;
D O I
10.1016/j.disc.2011.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a simple graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix. Then the signless Laplacian matrix of G is Q(G) = D(G) + A(G). In [5], Cvetkovic et al. (2007) have given conjectures on signless Laplacian eigenvalues of G (see also Aouchiche and Hansen (2010)[1], Oliveira et al. (2010) [14]). Here we prove two conjectures. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:992 / 998
页数:7
相关论文
共 50 条
  • [31] On the sum of powers of the signless Laplacian eigenvalues of graphs
    Cui, Shu-Yu
    Tian, Gui-Xian
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 81 : 243 - 255
  • [32] On the multiplicity of distance signless Laplacian eigenvalues of graphs
    Xue, Jie
    Liu, Shuting
    Shu, Jinlong
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (11): : 2276 - 2288
  • [33] On graphs with three distinct signless Laplacian eigenvalues
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1451 - 1466
  • [34] On two conjectures on sum of the powers of signless Laplacian eigenvalues of a graph
    Ashraf, Firouzeh
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07): : 1314 - 1320
  • [35] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [36] The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph
    Hu, Shenglong
    Qi, Liqun
    Xie, Jinshan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 1 - 27
  • [37] THE SMALLEST SIGNLESS LAPLACIAN EIGENVALUE OF GRAPHS UNDER PERTURBATION
    He, Chang-Xiang
    Pan, Hao
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 473 - 482
  • [38] On a conjecture related to the smallest signless Laplacian eigenvalue of graphs
    Oboudi, Mohammad Reza
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4425 - 4431
  • [39] Proof of conjectures on adjacency eigenvalues of graphs
    Das, Kinkar Ch
    DISCRETE MATHEMATICS, 2013, 313 (01) : 19 - 25
  • [40] On the second largest Laplacian eigenvalues of graphs
    Li, Jianxi
    Guo, Ji-Ming
    Shiu, Wai Chee
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2438 - 2446