Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths

被引:7
|
作者
Yue, Junjie [1 ,2 ]
Zhang, Liping [1 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, State Key Lab Space Weather, Beijing 100910, Peoples R China
基金
中国国家自然科学基金;
关键词
H-eigenvalue; hypergraph; adjacency tensor; signless Laplacian tensor; Laplacian tensor; loose path; NONNEGATIVE TENSORS; HYPERGRAPHS;
D O I
10.1007/s11464-015-0452-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate k-uniform loose paths. We show that the largest H-eigenvalues of their adjacency tensors, Laplacian tensors, and signless Laplacian tensors are computable. For a k-uniform loose path with length l >= 3, we show that the largest H-eigenvalue of its adjacency tensor is ((1 + root 5)/2)(2/k) when l = 3 and lambda(A) = 3(1/k) when l = 4, respectively. For the case of l >= 5, we tighten the existing upper bound 2. We also show that the largest H-eigenvalue of its signless Laplacian tensor lies in the interval (2, 3) when l >= 5. Finally, we investigate the largest H-eigenvalue of its Laplacian tensor when k is even and we tighten the upper bound 4.
引用
收藏
页码:623 / 645
页数:23
相关论文
共 50 条