Largest adjacency, signless Laplacian, and Laplacian H-eigenvalues of loose paths

被引:7
|
作者
Yue, Junjie [1 ,2 ]
Zhang, Liping [1 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, State Key Lab Space Weather, Beijing 100910, Peoples R China
基金
中国国家自然科学基金;
关键词
H-eigenvalue; hypergraph; adjacency tensor; signless Laplacian tensor; Laplacian tensor; loose path; NONNEGATIVE TENSORS; HYPERGRAPHS;
D O I
10.1007/s11464-015-0452-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate k-uniform loose paths. We show that the largest H-eigenvalues of their adjacency tensors, Laplacian tensors, and signless Laplacian tensors are computable. For a k-uniform loose path with length l >= 3, we show that the largest H-eigenvalue of its adjacency tensor is ((1 + root 5)/2)(2/k) when l = 3 and lambda(A) = 3(1/k) when l = 4, respectively. For the case of l >= 5, we tighten the existing upper bound 2. We also show that the largest H-eigenvalue of its signless Laplacian tensor lies in the interval (2, 3) when l >= 5. Finally, we investigate the largest H-eigenvalue of its Laplacian tensor when k is even and we tighten the upper bound 4.
引用
收藏
页码:623 / 645
页数:23
相关论文
共 50 条
  • [21] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [22] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, Shariefuddin
    Khan, Saleem
    arXiv, 2022,
  • [23] On a conjecture for the signless Laplacian eigenvalues
    Yang, Jieshan
    You, Lihua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 446 : 115 - 132
  • [24] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    S. Pirzada
    Saleem Khan
    Computational and Applied Mathematics, 2023, 42
  • [25] The largest eigenvalues of adjacency and Laplacian matrices, and ionization potentials of alkanes
    Gutman, I
    Vidovic, D
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2002, 41 (05): : 893 - 896
  • [26] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Saieed Akbari
    Ebrahim Ghorbani
    Jack H. Koolen
    Mohammad Reza Oboudi
    Journal of Algebraic Combinatorics, 2010, 32 : 459 - 464
  • [27] On the Adjacency, Laplacian, and Signless Laplacian Spectrum of Coalescence of Complete Graphs
    Jog, S. R.
    Kotambari, Raju
    JOURNAL OF MATHEMATICS, 2016, 2016
  • [28] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813
  • [29] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [30] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324