Random walks on the lamplighter group

被引:0
|
作者
Lyons, R
Pemantle, R
Peres, Y
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
来源
ANNALS OF PROBABILITY | 1996年 / 24卷 / 04期
关键词
bias; speed; rate of escape; dynamical environment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Kaimanovich and Vershik described certain finitely generated groups of exponential growth such that simple random walk on their Cayley graph escapes from the identity at a sublinear rate, or equivalently, all bounded harmonic functions on the Cayley graph are constant. Here we focus on a key example, called G(1) by Kaimanovich and Vershik, and show that inward-biased random walks on G(1) move outward faster than simple random walk. Indeed, they escape from the identity at a linear rate provided that the bias parameter is smaller than the growth rate of G(1). These walks can be viewed as random walks interacting with a dynamical environment on Z. The proof uses potential theory to analyze a stationary environment as seen from the moving particle.
引用
收藏
页码:1993 / 2006
页数:14
相关论文
共 50 条
  • [31] Quadratic equations in the lamplighter group
    Ushakov, Alexander
    Weiers, Chloe
    JOURNAL OF SYMBOLIC COMPUTATION, 2025, 129
  • [32] Positive harmonic functions for semi-isotropic random walks on trees, lamplighter groups, and DL-Graphs
    Brofferio, S
    Woess, W
    POTENTIAL ANALYSIS, 2006, 24 (03) : 245 - 265
  • [33] Positive Harmonic Functions for Semi-Isotropic Random Walks on Trees, Lamplighter Groups, and DL-Graphs
    Sara Brofferio
    Wolfgang Woess
    Potential Analysis, 2006, 24 : 245 - 265
  • [34] The Euclidean Distortion of the Lamplighter Group
    Tim Austin
    Assaf Naor
    Alain Valette
    Discrete & Computational Geometry, 2010, 44 : 55 - 74
  • [35] Invariant random subgroups of lamplighter groups
    Bowen, Lewis
    Grigorchuk, Rostislav
    Kravchenko, Rostyslav
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 207 (02) : 763 - 782
  • [36] Invariant random subgroups of lamplighter groups
    Lewis Bowen
    Rostislav Grigorchuk
    Rostyslav Kravchenko
    Israel Journal of Mathematics, 2015, 207 : 763 - 782
  • [37] RECURRENT RANDOM-WALKS IN RECURRENT RANDOM-MEDIA ON A GROUP
    SUNYACH, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 303 (10): : 479 - 481
  • [38] On the lattice of subgroups of the lamplighter group
    Grigorchuk, R.
    Kravchenko, R.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (06) : 837 - 877
  • [39] The Lamplighter Group Ln(h)
    Mamaril, Mark Camilo C.
    De Las Penas, Ma. Louise Antonette N.
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [40] The Euclidean Distortion of the Lamplighter Group
    Austin, Tim
    Naor, Assaf
    Valette, Alain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) : 55 - 74