We show that the cyclic lamplighter group C2≀Cn embeds into Hilbert space with distortion
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathrm{O}(\sqrt{\log n})$\end{document}
. This matches the lower bound proved by Lee et al. (Geom. Funct. Anal., 2009), answering a question posed in that paper. Thus, the Euclidean distortion of C2≀Cn is
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\varTheta(\sqrt{\log n})$\end{document}
. Our embedding is constructed explicitly in terms of the irreducible representations of the group. Since the optimal Euclidean embedding of a finite group can always be chosen to be equivariant, as shown by Aharoni et al. (Isr. J. Math. 52(3):251–265, 1985) and by Gromov (see de Cornulier et. al. in Geom. Funct. Anal., 2009), such representation-theoretic considerations suggest a general tool for obtaining upper and lower bounds on Euclidean embeddings of finite groups.