The Euclidean Distortion of the Lamplighter Group

被引:0
|
作者
Tim Austin
Assaf Naor
Alain Valette
机构
[1] UCLA,
[2] Courant Institute,undefined
[3] Université de Neuchâtel,undefined
来源
关键词
Bi-Lipschitz distortion; Lamplighter group;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the cyclic lamplighter group C2≀Cn embeds into Hilbert space with distortion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{O}(\sqrt{\log n})$\end{document} . This matches the lower bound proved by Lee et al. (Geom. Funct. Anal., 2009), answering a question posed in that paper. Thus, the Euclidean distortion of C2≀Cn is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varTheta(\sqrt{\log n})$\end{document} . Our embedding is constructed explicitly in terms of the irreducible representations of the group. Since the optimal Euclidean embedding of a finite group can always be chosen to be equivariant, as shown by Aharoni et al. (Isr. J. Math. 52(3):251–265, 1985) and by Gromov (see de Cornulier et. al. in Geom. Funct. Anal., 2009), such representation-theoretic considerations suggest a general tool for obtaining upper and lower bounds on Euclidean embeddings of finite groups.
引用
收藏
页码:55 / 74
页数:19
相关论文
共 50 条
  • [1] The Euclidean Distortion of the Lamplighter Group
    Austin, Tim
    Naor, Assaf
    Valette, Alain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) : 55 - 74
  • [2] Simulations and the lamplighter group
    Bartholdi, Laurent
    Salo, Ville
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (04) : 1461 - 1514
  • [3] Quadratic equations in the lamplighter group
    Ushakov, Alexander
    Weiers, Chloe
    JOURNAL OF SYMBOLIC COMPUTATION, 2025, 129
  • [4] Random walks on the lamplighter group
    Lyons, R
    Pemantle, R
    Peres, Y
    ANNALS OF PROBABILITY, 1996, 24 (04): : 1993 - 2006
  • [5] On the lattice of subgroups of the lamplighter group
    Grigorchuk, R.
    Kravchenko, R.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (06) : 837 - 877
  • [6] The Lamplighter Group Ln(h)
    Mamaril, Mark Camilo C.
    De Las Penas, Ma. Louise Antonette N.
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [7] Metric properties of the lamplighter group as an automata group
    Cleary, S
    Taback, J
    Geometric Methods in Group Theory, 2005, 372 : 207 - 218
  • [8] Girth and Euclidean distortion
    Linial, N
    Magen, A
    Naor, A
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) : 380 - 394
  • [9] Girth and Euclidean distortion
    N. Linial
    A. Magen
    A. Naor
    Geometric & Functional Analysis GAFA, 2002, 12 : 380 - 394
  • [10] Spectral Dynamics for the Infinite Dihedral Group and the Lamplighter Group
    Zu, Chao
    Yang, Yixin
    Lu, Yufeng
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (03) : 883 - 910