The Euclidean Distortion of the Lamplighter Group

被引:0
|
作者
Tim Austin
Assaf Naor
Alain Valette
机构
[1] UCLA,
[2] Courant Institute,undefined
[3] Université de Neuchâtel,undefined
来源
关键词
Bi-Lipschitz distortion; Lamplighter group;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the cyclic lamplighter group C2≀Cn embeds into Hilbert space with distortion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{O}(\sqrt{\log n})$\end{document} . This matches the lower bound proved by Lee et al. (Geom. Funct. Anal., 2009), answering a question posed in that paper. Thus, the Euclidean distortion of C2≀Cn is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varTheta(\sqrt{\log n})$\end{document} . Our embedding is constructed explicitly in terms of the irreducible representations of the group. Since the optimal Euclidean embedding of a finite group can always be chosen to be equivariant, as shown by Aharoni et al. (Isr. J. Math. 52(3):251–265, 1985) and by Gromov (see de Cornulier et. al. in Geom. Funct. Anal., 2009), such representation-theoretic considerations suggest a general tool for obtaining upper and lower bounds on Euclidean embeddings of finite groups.
引用
收藏
页码:55 / 74
页数:19
相关论文
共 50 条
  • [31] SPECTRA OF CAYLEY GRAPHS OF THE LAMPLIGHTER GROUP AND RANDOM SCHRODINGER OPERATORS
    Grigorchuk, Rostislav
    Simanek, Brian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (04) : 2421 - 2445
  • [32] Least distortion Euclidean embeddings of flat tori
    Moustrou, Philippe
    Vallentin, Frank
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 13 - 23
  • [33] Quivers and the Euclidean group
    Savage, Alistair
    REPRESENTATION THEORY-BK, 2009, 478 : 177 - 188
  • [34] On NP-completeness of subset sum problem for Lamplighter group
    Mishchenko, Alexei
    Treier, Alexander
    MECHANICAL SCIENCE AND TECHNOLOGY UPDATE (MSTU-2018), 2018, 1050
  • [35] The Lamplighter
    Dunmore, Helen
    PLOUGHSHARES, 2015, 41 (01) : 67 - 67
  • [36] L2-Betti numbers arising from the lamplighter group
    Ara, Pere
    Claramunt, Joan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (04) : 1201 - 1245
  • [37] The Lamplighter Group Z3Z Generated by a Bireversible Automaton
    Bondarenko, Ievgen
    D'Angeli, Daniele
    Rodaro, Emanuele
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (12) : 5257 - 5268
  • [38] Lamplighter
    Gabriel, Joseph
    GRADIVA, 2015, (47): : 100 - 100
  • [39] Irrational l2-invariants arising from the lamplighter group
    Grabowski, Lukasz
    GROUPS GEOMETRY AND DYNAMICS, 2016, 10 (02) : 795 - 817
  • [40] OLD LAMPLIGHTER
    WALKER, B
    ARCHIVES OF ENVIRONMENTAL HEALTH, 1970, 21 (01): : 105 - &