The Euclidean Distortion of the Lamplighter Group

被引:0
|
作者
Tim Austin
Assaf Naor
Alain Valette
机构
[1] UCLA,
[2] Courant Institute,undefined
[3] Université de Neuchâtel,undefined
来源
关键词
Bi-Lipschitz distortion; Lamplighter group;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the cyclic lamplighter group C2≀Cn embeds into Hilbert space with distortion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{O}(\sqrt{\log n})$\end{document} . This matches the lower bound proved by Lee et al. (Geom. Funct. Anal., 2009), answering a question posed in that paper. Thus, the Euclidean distortion of C2≀Cn is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varTheta(\sqrt{\log n})$\end{document} . Our embedding is constructed explicitly in terms of the irreducible representations of the group. Since the optimal Euclidean embedding of a finite group can always be chosen to be equivariant, as shown by Aharoni et al. (Isr. J. Math. 52(3):251–265, 1985) and by Gromov (see de Cornulier et. al. in Geom. Funct. Anal., 2009), such representation-theoretic considerations suggest a general tool for obtaining upper and lower bounds on Euclidean embeddings of finite groups.
引用
收藏
页码:55 / 74
页数:19
相关论文
共 50 条