Volume Distortion for Subsets of Euclidean Spaces

被引:0
|
作者
James R. Lee
机构
[1] University of Washington,
来源
关键词
Finite metric spaces; Approximation algorithms; Bi-Lipschitz geometry;
D O I
暂无
中图分类号
学科分类号
摘要
In Rao (Proceedings of the 15th Annual Symposium on Computational Geometry, pp. 300–306, 1999), it is shown that every n-point Euclidean metric with polynomial aspect ratio admits a Euclidean embedding with k-dimensional distortion bounded by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n\log k})$\end{document} , a result which is tight for constant values of k. We show that this holds without any assumption on the aspect ratio and give an improved bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}(\log k)^{1/4})$\end{document} . Our main result is an upper bound of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{\log n}\log\log n)$\end{document} independent of the value of k, nearly resolving the main open questions of Dunagan and Vempala (Randomization, Approximation, and Combinatorial Optimization, pp. 229–240, 2001) and Krauthgamer et al. (Discrete Comput. Geom. 31(3):339–356, 2004). The best previous bound was O(log n), and our bound is nearly tight, as even the two-dimensional volume distortion of an n-vertex path is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(\sqrt{\log n})$\end{document} .
引用
收藏
页码:590 / 615
页数:25
相关论文
共 50 条