A distance function for computing on finite subsets of Euclidean spaces

被引:0
|
作者
Ghahremani-Gol, Hajar [1 ,2 ]
Didehvar, Farzad [2 ]
Razavi, Asadollah [2 ,3 ]
机构
[1] Shahed Univ, Dept Math, Fac Sci, Tehran 3319118651, Iran
[2] Amirkabir Univ Technol, Dept Math & Comp Sci, 424 Hafez Ave, Tehran 1591634311, Iran
[3] Shahid Bahonar Univ Kerman, Fac Math & Comp Sci, Dept Pure Math, Kerman, Iran
来源
关键词
geodesic; least square method; vehicle routing problem; traveling salesman problem; three dimensional triangulation; VORONOI DIAGRAMS; SURFACES; ALGORITHM; PDE;
D O I
10.1007/s10255-018-0735-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In practical purposes for some geometrical problems, specially the fields in common with computer science, we deal with information of some finite number of points. The problem often arises here is: "How are we able to define a plausible distance function on a finite three dimensional space?" In this paper, we define such a distance function in order to apply it to further purposes, e.g. in the field settings of transportation theory and geometry. More precisely, we present a new model for traveling salesman problem and vehicle routing problem for two dimensional manifolds in three dimensional Euclidean space, the second problem on which we focus on this line is, three dimensional triangulation.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [1] A Distance Function for Computing on Finite Subsets of Euclidean Spaces
    Hajar Ghahremani-Gol
    Farzad Didehvar
    Asadollah Razavi
    [J]. Acta Mathematicae Applicatae Sinica, 2018, 34 (01) : 197 - 208
  • [2] A distance function for computing on finite subsets of Euclidean spaces
    Hajar Ghahremani-Gol
    Farzad Didehvar
    Asadollah Razavi
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 197 - 208
  • [3] Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces
    Robinson, James C.
    [J]. NONLINEARITY, 2009, 22 (04) : 711 - 728
  • [4] Almost spanning distance trees in subsets of finite vector spaces
    Chakraborti, Debsoumya
    Lund, Ben
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (05) : 1716 - 1733
  • [5] Volume Distortion for Subsets of Euclidean Spaces
    James R. Lee
    [J]. Discrete & Computational Geometry, 2009, 41 : 590 - 615
  • [6] Volume Distortion for Subsets of Euclidean Spaces
    Lee, James R.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (04) : 590 - 615
  • [7] SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES
    Iosevich, Alex
    Magyar, Akos
    [J]. ANALYSIS & PDE, 2023, 16 (07): : 1485 - 1496
  • [8] Homotopy properties of subsets of Euclidean spaces
    Passandideh, Hadi
    Ghane, F. H.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 194 : 202 - 211
  • [9] Computing the Euclidean distance transform
    Gavrilova, ML
    Alsuwaiyel, MH
    [J]. PDPTA'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, 2001, : 1548 - 1553
  • [10] DISTANCE SETS OF TWO SUBSETS OF VECTOR SPACES OVER FINITE FIELDS
    Koh, Doowon
    Sun, Hae-Sang
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (04) : 1679 - 1692