Random walks on the lamplighter group

被引:0
|
作者
Lyons, R
Pemantle, R
Peres, Y
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
来源
ANNALS OF PROBABILITY | 1996年 / 24卷 / 04期
关键词
bias; speed; rate of escape; dynamical environment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Kaimanovich and Vershik described certain finitely generated groups of exponential growth such that simple random walk on their Cayley graph escapes from the identity at a sublinear rate, or equivalently, all bounded harmonic functions on the Cayley graph are constant. Here we focus on a key example, called G(1) by Kaimanovich and Vershik, and show that inward-biased random walks on G(1) move outward faster than simple random walk. Indeed, they escape from the identity at a linear rate provided that the bias parameter is smaller than the growth rate of G(1). These walks can be viewed as random walks interacting with a dynamical environment on Z. The proof uses potential theory to analyze a stationary environment as seen from the moving particle.
引用
收藏
页码:1993 / 2006
页数:14
相关论文
共 50 条
  • [1] Lamplighter Random Walks on Fractals
    Takashi Kumagai
    Chikara Nakamura
    Journal of Theoretical Probability, 2018, 31 : 68 - 92
  • [2] Lamplighter Random Walks on Fractals
    Kumagai, Takashi
    Nakamura, Chikara
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 68 - 92
  • [3] Radon transforms and lamplighter random walks
    Scarabotti F.
    Tolli F.
    Journal of Mathematical Sciences, 2009, 156 (1) : 109 - 122
  • [4] A note on the Poisson boundary of lamplighter random walks
    Ecaterina Sava
    Monatshefte für Mathematik, 2010, 159 : 379 - 396
  • [5] The Poisson boundary of lamplighter random walks on trees
    Anders Karlsson
    Wolfgang Woess
    Geometriae Dedicata, 2007, 124 : 95 - 107
  • [6] A note on the Poisson boundary of lamplighter random walks
    Sava, Ecaterina
    MONATSHEFTE FUR MATHEMATIK, 2010, 159 (04): : 379 - 396
  • [7] Harmonic Analysis of Finite Lamplighter Random Walks
    Fabio Scarabotti
    Filippo Tolli
    Journal of Dynamical and Control Systems, 2008, 14 : 251 - 282
  • [8] Harmonic analysis of finite lamplighter random walks
    Scarabotti, Fabio
    Tolli, Filippo
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2008, 14 (02) : 251 - 282
  • [9] The Poisson boundary of lamplighter random walks on trees
    Karlsson, Anders
    Woess, Wolfgang
    GEOMETRIAE DEDICATA, 2007, 124 (01) : 95 - 107
  • [10] Mixing times for random walks on finite lamplighter groups
    Peres, Y
    Revelle, D
    ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 : 825 - 845