Random walks on the lamplighter group

被引:0
|
作者
Lyons, R
Pemantle, R
Peres, Y
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
来源
ANNALS OF PROBABILITY | 1996年 / 24卷 / 04期
关键词
bias; speed; rate of escape; dynamical environment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Kaimanovich and Vershik described certain finitely generated groups of exponential growth such that simple random walk on their Cayley graph escapes from the identity at a sublinear rate, or equivalently, all bounded harmonic functions on the Cayley graph are constant. Here we focus on a key example, called G(1) by Kaimanovich and Vershik, and show that inward-biased random walks on G(1) move outward faster than simple random walk. Indeed, they escape from the identity at a linear rate provided that the bias parameter is smaller than the growth rate of G(1). These walks can be viewed as random walks interacting with a dynamical environment on Z. The proof uses potential theory to analyze a stationary environment as seen from the moving particle.
引用
收藏
页码:1993 / 2006
页数:14
相关论文
共 50 条
  • [41] Generalised Cogrowth series, random walks, and the group determinant
    Humphries, Stephen P.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 165 (03) : 445 - 465
  • [42] Random walks generated by the Ewens distribution on the symmetric group
    Oezdemir, Alperen
    ALGEBRAIC COMBINATORICS, 2023, 6 (04):
  • [43] Quotient tests and random walks in computational group theory
    Borovik, AV
    Myasnikov, AG
    TOPOLOGICAL AND ASYMPTOTIC ASPECTS OF GROUP THEORY, 2006, 394 : 31 - +
  • [44] Random walks on Teichmuller space and the mapping class group
    Masur, H
    JOURNAL D ANALYSE MATHEMATIQUE, 1995, 67 : 117 - 164
  • [45] Cut times for random walks on the discrete Heisenberg group
    Blachère, S
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (04): : 621 - 638
  • [46] Metric properties of the lamplighter group as an automata group
    Cleary, S
    Taback, J
    Geometric Methods in Group Theory, 2005, 372 : 207 - 218
  • [47] Lamplighter model of a random copolymer adsorption on a line
    Nazarov, L. I.
    Nechaev, S. K.
    Tamm, M. V.
    CONDENSED MATTER PHYSICS, 2014, 17 (03)
  • [48] Spectral Dynamics for the Infinite Dihedral Group and the Lamplighter Group
    Zu, Chao
    Yang, Yixin
    Lu, Yufeng
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (03) : 883 - 910
  • [49] Are random walks random?
    Nogues, J
    Costa-Kramer, JL
    Rao, KV
    PHYSICA A, 1998, 250 (1-4): : 327 - 334
  • [50] HEAT KERNEL ASYMPTOTICS ON THE LAMPLIGHTER GROUP
    Revelle, David
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 : 142 - 154