Random walks on the lamplighter group

被引:0
|
作者
Lyons, R
Pemantle, R
Peres, Y
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
[2] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
来源
ANNALS OF PROBABILITY | 1996年 / 24卷 / 04期
关键词
bias; speed; rate of escape; dynamical environment;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Kaimanovich and Vershik described certain finitely generated groups of exponential growth such that simple random walk on their Cayley graph escapes from the identity at a sublinear rate, or equivalently, all bounded harmonic functions on the Cayley graph are constant. Here we focus on a key example, called G(1) by Kaimanovich and Vershik, and show that inward-biased random walks on G(1) move outward faster than simple random walk. Indeed, they escape from the identity at a linear rate provided that the bias parameter is smaller than the growth rate of G(1). These walks can be viewed as random walks interacting with a dynamical environment on Z. The proof uses potential theory to analyze a stationary environment as seen from the moving particle.
引用
收藏
页码:1993 / 2006
页数:14
相关论文
共 50 条
  • [21] Random walks and random tug of war in the Heisenberg group
    Marta Lewicka
    Juan Manfredi
    Diego Ricciotti
    Mathematische Annalen, 2020, 377 : 797 - 846
  • [22] Random walks and random tug of war in the Heisenberg group
    Lewicka, Marta
    Manfredi, Juan
    Ricciotti, Diego
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 797 - 846
  • [23] Simulations and the lamplighter group
    Bartholdi, Laurent
    Salo, Ville
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (04) : 1461 - 1514
  • [24] Random walks in a random environment on a strip:: a renormalization group approach
    Juhasz, Robert
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
  • [25] Bridge mixtures of random walks on an Abelian group
    Conforti, Giovanni
    Roelly, Sylvie
    BERNOULLI, 2017, 23 (03) : 1518 - 1537
  • [26] RANDOM-WALKS ON GROUP OF RD DISPLACEMENTS
    ROYNETTE, B
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 31 (01): : 25 - 33
  • [27] Random walks, WPD actions, and the Cremona group
    Maher, Joseph
    Tiozzo, Giulio
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 123 (02) : 153 - 202
  • [28] BIOPOLYMER CONFORMATIONS AS RANDOM WALKS ON THE EUCLIDEAN GROUP
    Becker, N. B.
    PATH INTEGRALS: NEW TRENDS AND PERSPECTIVES, PROCEEDINGS, 2008, : 577 - 580
  • [29] Group Recommendations: Axioms, Impossibilities, and Random Walks
    Lev, Omer
    Tennenholtz, Moshe
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2017, (251): : 382 - 397
  • [30] Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel-Leader graphs
    Brofferio, S
    Woess, W
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (06): : 1101 - 1123