THE LARGEST REAL EIGENVALUE IN THE REAL GINIBRE ENSEMBLE AND ITS RELATION TO THE ZAKHAROV-SHABAT SYSTEM

被引:11
|
作者
Baik, Jinho [1 ]
Bothner, Thomas [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Kings Coll London, Dept Math, London, England
来源
ANNALS OF APPLIED PROBABILITY | 2020年 / 30卷 / 01期
关键词
Real Ginibre ensemble; extreme value statistics; Riemann-Hilbert problem; Zakharov-Shabat system; inverse scattering theory; Deift-Zhou nonlinear steepest descent method; FREDHOLM DETERMINANTS; RANDOM MATRICES; SOLVABILITY;
D O I
10.1214/19-AAP1509
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The real Ginibre ensemble consists of n x n real matrices X whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius R-n = max(1 <= j <= n) vertical bar z(j)(X)vertical bar of the eigenvalues z(j)(X) is an element of C of a real Ginibre matrix X follows a different limiting law (as n -> infinity) for z(j) (X) is an element of R than for z(j) (X) is an element of C\R. Building on previous work by Rider and Sinclair (Ann. Appl. Probab. 24 (2014) 1621-1651) and Poplavskyi, Tribe and Zaboronski (Ann. Appl. Probab. 27 (2017) 1395-1413), we show that the limiting distribution of max(j:zj is an element of R) z(j)(X) admits a closed-form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. As byproducts of our analysis, we also obtain a new determinantal representation for the limiting distribution of max(j:zj is an element of R) z(j)(X) and extend recent tail estimates in (Ann. Appl. Probab. 27 (2017) 1395-1413) via nonlinear steepest descent techniques.
引用
收藏
页码:460 / 501
页数:42
相关论文
共 50 条
  • [41] GAUGE COVARIANT FORMULATION OF THE GENERATING OPERATOR .1. THE ZAKHAROV-SHABAT SYSTEM
    GERDJIKOV, VS
    YANOVSKI, AB
    PHYSICS LETTERS A, 1984, 103 (05) : 232 - 236
  • [42] Scattering data computation for the Zakharov-Shabat system with non-smooth potentials
    Fermo, L.
    van der Mee, C.
    Seatzu, S.
    APPLIED NUMERICAL MATHEMATICS, 2017, 116 : 195 - 203
  • [43] Edge Distribution of Thinned Real Eigenvalues in the Real Ginibre Ensemble
    Baik, Jinho
    Bothner, Thomas
    ANNALES HENRI POINCARE, 2022, 23 (11): : 4003 - 4056
  • [44] Edge Distribution of Thinned Real Eigenvalues in the Real Ginibre Ensemble
    Jinho Baik
    Thomas Bothner
    Annales Henri Poincaré, 2022, 23 : 4003 - 4056
  • [45] Erratum to: The Ginibre Ensemble of Real Random Matrices and its Scaling Limits
    Alexei Borodin
    Mihail Poplavskyi
    Christopher D. Sinclair
    Roger Tribe
    Oleg Zaboronski
    Communications in Mathematical Physics, 2016, 346 : 1051 - 1055
  • [46] The relation of Zakharov-Shabat scattering problem to Schrodinger equation with complex potential and approximations for soliton parameters
    Korneev, N.
    Catana Castellanos, J. A.
    Vysloukh, V. A.
    REVISTA MEXICANA DE FISICA, 2019, 65 (06) : 634 - 638
  • [47] CONCENTRATING A POTENTIAL AND ITS SCATTERING TRANSFORM FOR A DISCRETE VERSION OF THE SCHRODINGER AND ZAKHAROV-SHABAT OPERATORS
    GRUNBAUM, FA
    PHYSICA D-NONLINEAR PHENOMENA, 1990, 44 (1-2) : 92 - 98
  • [48] Schur function averages for the real Ginibre ensemble
    Sommers, Hans-Juergen
    Khoruzhenko, Boris A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (22)
  • [49] ON THE CONDITION NUMBER OF THE SHIFTED REAL GINIBRE ENSEMBLE
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroder, Dominik
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2022, 43 (03) : 1469 - 1487
  • [50] Fast Eigenvalue Evaluation of the Direct Zakharov-Shabat Problem in Telecommunication Signals Using Adaptive Phase Jump Tracking
    Chekhovskoy, I. S.
    Medvedev, S. B.
    Vaseva, I. A.
    Sedov, E., V
    Fedoruk, M. P.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,