Edge Distribution of Thinned Real Eigenvalues in the Real Ginibre Ensemble

被引:1
|
作者
Baik, Jinho [1 ]
Bothner, Thomas [2 ]
机构
[1] Univ Michigan, Dept Math, 2074 East Hall,530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, Avon, England
来源
ANNALES HENRI POINCARE | 2022年 / 23卷 / 11期
基金
英国工程与自然科学研究理事会;
关键词
BULK SCALING LIMIT; RANDOM-MATRIX; ASYMPTOTIC-BEHAVIOR; TAU-FUNCTION; LOG GAS; CONSTANT; PROBABILITY; DETERMINANT; SPECTRUM;
D O I
10.1007/s00023-022-01182-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the explicit computation of the limiting distribution function of the largest real eigenvalue in the real Ginibre ensemble when each real eigenvalue has been removed independently with constant likelihood. We show that the recently discovered integrable structures in [2] generalize from the real Ginibre ensemble to its thinned equivalent. Concretely, we express the aforementioned limiting distribution function as a convex combination of two simple Fredholm determinants and connect the same function to the inverse scattering theory of the Zakharov-Shabat system. As corollaries, we provide a Zakharov-Shabat evaluation of the ensemble's real eigenvalue generating function and obtain precise control over the limiting distribution function's tails. The latter part includes the explicit computation of the usually difficult constant factors.
引用
收藏
页码:4003 / 4056
页数:54
相关论文
共 50 条
  • [1] Edge Distribution of Thinned Real Eigenvalues in the Real Ginibre Ensemble
    Jinho Baik
    Thomas Bothner
    Annales Henri Poincaré, 2022, 23 : 4003 - 4056
  • [2] The Real Ginibre Ensemble with Real Eigenvalues
    del Molino, Luis Carlos Garcia
    Pakdaman, Khashayar
    Touboul, Jonathan
    Wainrib, Gilles
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (02) : 303 - 323
  • [3] Statistics of real eigenvalues in Ginibre's ensemble of random real matrices
    Kanzieper, E
    Akemann, G
    PHYSICAL REVIEW LETTERS, 2005, 95 (23)
  • [4] ON THE DISTRIBUTION OF THE LARGEST REAL EIGENVALUE FOR THE REAL GINIBRE ENSEMBLE
    Poplavskyi, Mihail
    Tribe, Roger
    Zaboronski, Oleg
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1395 - 1413
  • [5] Averages of products of characteristic polynomials and the law of real eigenvalues for the real Ginibre ensemble
    Tribe, Roger
    Zaboronski, Oleg
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (03)
  • [6] Symplectic structure of the real Ginibre ensemble
    Sommers, Hans-Juergen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : F671 - F676
  • [7] EXTREMAL LAWS FOR THE REAL GINIBRE ENSEMBLE
    Rider, Brian
    Sinclair, Christopher D.
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (04): : 1621 - 1651
  • [8] Spectral moments of the real Ginibre ensemble
    Byun, Sung-Soo
    Forrester, Peter J.
    RAMANUJAN JOURNAL, 2024, 64 (04): : 1497 - 1519
  • [9] Eigenvalue statistics of the real Ginibre ensemble
    Forrester, Peter J.
    Nagao, Taro
    PHYSICAL REVIEW LETTERS, 2007, 99 (05)
  • [10] Schur function averages for the real Ginibre ensemble
    Sommers, Hans-Juergen
    Khoruzhenko, Boris A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (22)