Eigenvalue statistics of the real Ginibre ensemble

被引:109
|
作者
Forrester, Peter J. [1 ]
Nagao, Taro
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1103/PhysRevLett.99.050603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The real Ginibre ensemble consists of random N x N matrices formed from independent and identically distributed standard Gaussian entries. By using the method of skew orthogonal polynomials, the general n-point correlations for the real eigenvalues, and for the complex eigenvalues, are given as n x n Pfaffians with explicit entries. A computationally tractable formula for the cumulative probability density of the largest real eigenvalue is presented. This is relevant to May's stability analysis of biological webs.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] ON THE DISTRIBUTION OF THE LARGEST REAL EIGENVALUE FOR THE REAL GINIBRE ENSEMBLE
    Poplavskyi, Mihail
    Tribe, Roger
    Zaboronski, Oleg
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1395 - 1413
  • [2] General eigenvalue correlations for the real Ginibre ensemble
    Sommers, Hans-Juergen
    Wieczorek, Waldemar
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (40)
  • [3] Intermediate deviation regime for the full eigenvalue statistics in the complex Ginibre ensemble
    Lacroix-A-Chez-Toine, Bertrand
    Monroy Garzon, Jeyson Andres
    Hidalgo Calva, Christopher Sebastian
    Perez Castillo, Isaac
    Kundu, Anupam
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [4] Statistics of real eigenvalues in Ginibre's ensemble of random real matrices
    Kanzieper, E
    Akemann, G
    PHYSICAL REVIEW LETTERS, 2005, 95 (23)
  • [5] Universality in the number variance and counting statistics of the real and symplectic Ginibre ensemble
    Akemann, Gernot
    Byun, Sung-Soo
    Ebke, Markus
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (49)
  • [6] Eigenvalue processes of Elliptic Ginibre Ensemble and their overlaps
    Yabuoku, Satoshi
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2020, 12 (01):
  • [7] THE LARGEST REAL EIGENVALUE IN THE REAL GINIBRE ENSEMBLE AND ITS RELATION TO THE ZAKHAROV-SHABAT SYSTEM
    Baik, Jinho
    Bothner, Thomas
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (01): : 460 - 501
  • [8] The Real Ginibre Ensemble with Real Eigenvalues
    del Molino, Luis Carlos Garcia
    Pakdaman, Khashayar
    Touboul, Jonathan
    Wainrib, Gilles
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (02) : 303 - 323
  • [9] Symplectic structure of the real Ginibre ensemble
    Sommers, Hans-Juergen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : F671 - F676
  • [10] EXTREMAL LAWS FOR THE REAL GINIBRE ENSEMBLE
    Rider, Brian
    Sinclair, Christopher D.
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (04): : 1621 - 1651