THE LARGEST REAL EIGENVALUE IN THE REAL GINIBRE ENSEMBLE AND ITS RELATION TO THE ZAKHAROV-SHABAT SYSTEM

被引:11
|
作者
Baik, Jinho [1 ]
Bothner, Thomas [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Kings Coll London, Dept Math, London, England
来源
ANNALS OF APPLIED PROBABILITY | 2020年 / 30卷 / 01期
关键词
Real Ginibre ensemble; extreme value statistics; Riemann-Hilbert problem; Zakharov-Shabat system; inverse scattering theory; Deift-Zhou nonlinear steepest descent method; FREDHOLM DETERMINANTS; RANDOM MATRICES; SOLVABILITY;
D O I
10.1214/19-AAP1509
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The real Ginibre ensemble consists of n x n real matrices X whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius R-n = max(1 <= j <= n) vertical bar z(j)(X)vertical bar of the eigenvalues z(j)(X) is an element of C of a real Ginibre matrix X follows a different limiting law (as n -> infinity) for z(j) (X) is an element of R than for z(j) (X) is an element of C\R. Building on previous work by Rider and Sinclair (Ann. Appl. Probab. 24 (2014) 1621-1651) and Poplavskyi, Tribe and Zaboronski (Ann. Appl. Probab. 27 (2017) 1395-1413), we show that the limiting distribution of max(j:zj is an element of R) z(j)(X) admits a closed-form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. As byproducts of our analysis, we also obtain a new determinantal representation for the limiting distribution of max(j:zj is an element of R) z(j)(X) and extend recent tail estimates in (Ann. Appl. Probab. 27 (2017) 1395-1413) via nonlinear steepest descent techniques.
引用
收藏
页码:460 / 501
页数:42
相关论文
共 50 条
  • [31] ON THE LINEARIZED NONLINEAR EVOLUTION-EQUATIONS ASSOCIATED WITH ZAKHAROV-SHABAT SYSTEM
    KHRISTOV, EK
    YORDANOV, RG
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1990, 43 (12): : 5 - 8
  • [32] Introducing phase jump tracking - a fast method for eigenvalue evaluation of the direct Zakharov-Shabat problem
    Chekhovskoy, Igor
    Medvedev, S. B.
    Vaseva, I. A.
    Sedov, E. V.
    Fedoruk, M. P.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [33] A numerical study of the large-period limit of a Zakharov-Shabat eigenvalue problem with periodic potentials
    Olivier, C. P.
    Herbst, B. M.
    Molchan, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [34] A HAMILTONIAN-STRUCTURE FROM GAUGE TRANSFORMATIONS OF THE ZAKHAROV-SHABAT SYSTEM
    GIACHETTI, R
    JOHNSON, R
    PHYSICS LETTERS A, 1984, 102 (03) : 81 - 82
  • [35] Symplectic structure of the real Ginibre ensemble
    Sommers, Hans-Juergen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (29) : F671 - F676
  • [36] The Ginibre Ensemble of Real Random Matrices and its Scaling Limits
    A. Borodin
    C. D. Sinclair
    Communications in Mathematical Physics, 2009, 291 : 177 - 224
  • [37] EXTREMAL LAWS FOR THE REAL GINIBRE ENSEMBLE
    Rider, Brian
    Sinclair, Christopher D.
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (04): : 1621 - 1651
  • [38] The Ginibre Ensemble of Real Random Matrices and its Scaling Limits
    Borodin, A.
    Sinclair, C. D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 177 - 224
  • [39] Spectral moments of the real Ginibre ensemble
    Byun, Sung-Soo
    Forrester, Peter J.
    RAMANUJAN JOURNAL, 2024, 64 (04): : 1497 - 1519
  • [40] Some remarks on a WKB method for the nonselfadjoint Zakharov-Shabat eigenvalue problem with analytic potentials and fast phase
    Miller, PD
    PHYSICA D, 2001, 152 : 145 - 162